Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (3): 458-463    DOI: 10.11902/1005.4537.2021.118
Current Issue | Archive | Adv Search |
Corrosion of Electrode Materials in Joule Heated Melter
ZHANG Keqian, ZHANG Hua(), LI Yang, HONG Ye, HE Cheng
China Institute of Atomic Energy, Beijing 102413, China
Download:  HTML  PDF(3710KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion of ceramic furnace electrode materials in molten glass is discussed from three aspects: material, temperature and applied current. The results show that Inconel 693 forms an Al2O3 scale in molten glass. The corrosion resistance of Inconel 693 is better than that of Inconel 690. With the change of temperature, the corrosion rate of the material is determined by the Cr diffusion rate inside the material and the Cr2O3 dissolution rate on the surface. In the presence of electric current, the passive film of Inconel alloy in molten glass is destroyed and its corrosion resistance becomes poor. It is also suggested that the corrosion behavior and the relevant corrosion mechanism of materials should be investigated in combination with the practical operation conditions of JHM in the future.

Key words:  electrode material      corrosion behavior      molten glass      joule heated melter     
Received:  26 May 2021     
ZTFLH:  TG172  
Corresponding Authors:  ZHANG Hua     E-mail:  zhanghua_32@ciae.ac.cn
About author:  ZHANG Hua, E-mail: zhanghua_32@ciae.ac.cn

Cite this article: 

ZHANG Keqian, ZHANG Hua, LI Yang, HONG Ye, HE Cheng. Corrosion of Electrode Materials in Joule Heated Melter. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 458-463.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.118     OR     https://www.jcscp.org/EN/Y2022/V42/I3/458

Fig.1  Corrosion of Inconel 625 alloy in molten borosil-icate glass[4]
AlloyNiCrFeAlNb
Inconel 690>5827~317~11------
Inconel 693Bal.27~312.5~62.5~40.5~2.5
Table 1  Composition comparisons of Inconel 690 and Inconel 693 alloys[5](mass fraction / %)
Fig.2  SEM micrographs of corrosion surface of Inconel 690 (a) and Inconel 693 (b) alloys[12]
Fig.3  Corrosion of Inconel 693 alloy in borosilicate molten glass for 45 h (a), 144 h (b), 360 h (c) and metal matrix (d)[13]
Fig.4  SEM image (a) and magnified image of area A (b) and B (c) in Fig.4a of Inconel 693 alloy corroded in 1000 ℃ iron phosphate glass for 7 d[5]
Fig.5  SEM images of Inconel 690 (a) and Inconel 693 (b) alloys corroded in 1050 ℃ iron phosphate glass for 7 d[5]
Fig.6  SEM images of corrosion of Inconel 693 alloy in iron phosphate glass solution: (a) static electrode corrosion test, (b) control group[18]
1 Ojovan M I. Handbook of Advanced Radioactive Waste Conditioning Technologies [M]. Cambridge: Woodhead Publishing, 2011
2 Li Y S, Zhang S D, Xian L, et al. Progress in research and development of vitrification technology for high-level radioactive liquid waste at CIAE [J]. At. Energy Sci. Technol., 2020, 54: 126
李玉松, 张生栋, 鲜亮等. CIAE高放废液固化技术研发进展 [J]. 原子能科学技术, 2020, 54: 126
3 Zhang W, Dong H L, Ruan M Z. Applicability analysis of ceramic melter technology in vitrification of high level radioactive liquid waste from spent fuel reprocessing of nuclear power plants [J]. Radiat. Prot., 2019, 39: 322
张威, 董海龙, 阮苠秩. 陶瓷电熔炉在动力堆高放废液玻璃固化中适用性分析 [J]. 辐射防护, 2019, 39: 322
4 Sengupta P, Mittra J, Kale G B. Interaction between borosilicate melt and Inconel [J]. J. Nucl. Mater., 2006, 350: 66
5 Hsu J H, Newkirk J W, Kim C W, et al. Corrosion of Inconel 690 and Inconel 693 in an iron phosphate glass melt [J]. Corros. Sci., 2013, 75: 148
6 Giggins C S, Pettit F S. Oxidation of Ni‐Cr‐Al alloys between 1000 ℃ and 1200 ℃ [J]. J. Electrochem. Soc., 1971, 118: 1782
7 Maruyama T, Ani M H B, Ueda M, et al. Quantitative evaluation of the effect on the Al addition on the internal-external oxidation in Ni-Cr alloys [A]. Proceedings of High Temperature Corrosion and Materials Chemistry: Proceedings of the International Symposium [C]. New Jersey, 2003: 96
8 Campbell F C. ASM Handbook: Alloy Phase Diagrams [M]. Materials Park: ASM International, 2012
9 Sims C T. Niobium in superalloys: A perspective [J]. High Temp. Technol., 1984, 4: 185
10 Natesan K, Baxter D J. Stability of chromium oxide scales in oxygen-sulfur containing environments at elevated temperatures [A]. Proceedings of TMS-AIME Fall Meeting [C]. Detroit, 1984: 237
11 Zhu D M, Kim C W, Day D E. Corrosion behavior of Inconel 690 and 693 in an iron phosphate melt [J]. J. Nucl. Mater., 2005, 336: 47
12 Halder R, Sengupta P, Abraham G, et al. Interaction of alloy 693 with borosilicate glass at high temperature [J]. Mater. Today, 2016, 3: 3025
13 Chen T F, Tiwari G P, Iijima Y, et al. Volume and grain boundary diffusion of chromium in Ni-base Ni-Cr-Fe alloys [J]. Mater. Trans., 2003, 44: 40
14 Chen T F, Iijima Y, Hirano K I, et al. Diffusion of chromium in nickel-base Ni-Cr-Fe alloys [J]. J. Nucl. Mater., 1989, 169: 285
15 Tan T C, Chin D T. A.c. corrosion of nickel in sulphate solutions [J]. J. Appl. Electrochem., 1988, 18: 831
16 Wendt J L, Chin D T. The a.c. corrosion of stainless steel-II. The breakdown of passivity of ss304 in neutral aqueous solutions [J]. Corros. Sci., 1985, 25: 889
17 Gan H, Buechele A C, Kim C W, et al. Corrosion of Inconel-690 electrodes in waste glass melts [J]. MRS Online Proc. Libr., 1999, 556: 287
18 Hsu J H, Newkirk J W, Kim C W, et al. The performance of Inconel 693 electrodes for processing an iron phosphate glass melt containing 26 wt.% of a simulated low activity waste [J]. J. Nucl. Mater., 2014, 444: 323
19 Dutta R S, Bhandari S, Chakravarthy Y, et al. Development of aluminide coatings on Ni-Cr-Fe based superalloy 690 substrates for high temperature applications using atmospheric plasma spraying technique [J]. Mater. Today, 2016, 3: 3018
20 Dharini T, Kuppusami P, Panda P, et al. Nanomechanical behaviour of Ni-YSZ nanocomposite coatings on superalloy 690 as diffusion barrier coatings for nuclear applications [J]. Ceram. Int., 2020, 46: 24183
21 Yusufali C, Kshirsagar R J, Jagannath, et al. Surface studies on aluminized and thermally oxidized Alloy 690 substrates interacted with nitrate-based simulated nuclear waste and sodium borosilicate melt using Raman spectroscopy and X-ray photoelectron spectroscopy [J]. Surf. Coat. Technol., 2015, 266: 31
22 Dutta R S, Yusufali C, Paul B, et al. Formation of diffusion barrier coating on superalloy 690 substrate and its stability in borosilicate melt at elevated temperature [J]. J. Nucl. Mater., 2013, 432: 72
[1] YANG Yong, ZHANG Qingbao, ZHU Wancheng, LUO Yanlong. Effect of Magnetic Field on Corrosion Behavior of X52 Pipeline Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(3): 501-506.
[2] ZHANG Jian, HUANG Jin, XU Jiapeng, LUO Guoqiang, SHEN Qiang. Corrosion Behavior of Molybdenum in LiF-LiCl-LiBr-Li Molten Salt at 500 ℃[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[3] FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[4] LIU Quanbing, LIU Zongde, GUO Shengyang, XIAO Yi. Galvanic Corrosion Behavior of 5083 Al-alloy and 30CrMnSiA Steel in NaCl solutions[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[5] ZHANG Xin, LIN Muyan, YANG Guangheng, WANG Zehua, SHAO Jia, ZHOU Zehua. Effect of Er on Corrosion Behavior of Marine Engineering 5052 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[6] QIAO Zhongli, WANG Ling, SHI Yanhua, YANG Zongkui. Microstructure and Corrosion Resistance of Welded Joint of 14Cr1MoR Steel[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
[7] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[8] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[9] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[10] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[11] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[12] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[13] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[14] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[15] WANG Qinying,PEI Rui,XI Yuchen. Erosion-corrosion Behavior of Laser-clad Ni-based Alloy Coating on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
No Suggested Reading articles found!