Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (5): 425-431    DOI: 10.11902/1005.4537.2019.267
Current Issue | Archive | Adv Search |
Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method
DAI Mingjie1,2, LIU Jing1,2(), HUANG Feng1,2, HU Qian1,2, LI Shuang1
1 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2 Hubei Engineering Technology Research Center of Marine Materials and Service Safety, Wuhan University of Science and Technology, Wuhan 430081, China
Download:  HTML  PDF(7480KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The pitting behavior of X100 pipeline steel in an artificial solution, as a simulation of acidic soil environment was studied under fluctuated cathodic protection potentials with varying fluctuation parameters, such as potential fluctuation frequency (f), fluctuation amplitude (E), duty cycle (δ) and total loading time (tt). While the fluctuated cathodic protection potentials were simulated by means of square wave polarization (SWP) technology. The results show that the influence intensity of the potential fluctuation parameters can be ranked as follows: ttδfE. However, among others, when the test lasted for 3 d with the following potential fluctuation parameters, namely f=0.5 Hz, E=-0.95~-0.7 V and δ=50%, the X100 pipeline steel presented the worst resistance to localized corrosion. Furthermore, the pitting density would rise with the increase of f, E and tt, and reaches the maximum when δ is 50%.

Key words:  orthogonal test      cathodic protection      pipeline steel      pitting corrosion     
Received:  18 December 2019     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51871171);National Natural Science Foundation of China(51871172)
Corresponding Authors:  LIU Jing     E-mail:  liujing@wust.edu.cn

Cite this article: 

DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method. Journal of Chinese Society for Corrosion and protection, 2020, 40(5): 425-431.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.267     OR     https://www.jcscp.org/EN/Y2020/V40/I5/425

Fig.1  Schematic diagram of square wave polarization potential simulating cathodic protection potential fluctuation
FactorLevel
123
A:potential fluctuation frequency (f / Hz)0.50.050.005
B:potential fluctuation range (E / V)-0.95~-0.9-0.95~-0.8-0.95~-0.7
C: duty cycle (δ / %)305070
D: total loading time (tt / d)123
Table 1  Orthogonal test of factors and levels table
Fig.2  Topography views of pitting after testing: (a) A1B1C1D1, (b) A1B2C2D2, (c) A1B3C3D3, (d) A2B1C2D3, (e)A2B2C3D1, (f) A2B3C1D2, (g) A3B1C3D2, (h) A3B2C1D3, (i) A3B3C2D1
Test numberFactorsPitting density mm-2
A (potential fluctuation frequency f ) / HzB (potential fluctuation range E) / VC (duty cycleδ) / %D (total loading time tt) / d
A1B1C1D10.5-0.95~-0.9301645.167
A1B2C2D20.5-0.95~-0.85022379.119
A1B3C3D30.5-0.95~-0.77034249.170
A2B1C2D30.05-0.95~-0.95034151.511
A2B2C3D10.05-0.95~-0.8701551.665
A2B3C1D20.05-0.95~-0.73021739.147
A3B1C3D20.005-0.95~-0.9702906.974
A3B2C1D30.005-0.95~-0.83033220.642
A3B3C2D10.005-0.95~-0.75011293.451
K17273.4565703.6535604.9562490.283---
K26442.3236151.4267824.0815025.240---
K35421.0677281.7685707.80911621.323---
Kˉ12424.4851901.2181868.319830.094---
Kˉ22147.4412050.4752608.0271675.080---
Kˉ31807.0222427.2561902.6033873.774---
Range (R)617.463526.038739.7083043.680---
Factor order3421---
Maximum pitting density combination0.5-0.95~-0.7503---
Table 2  Pitting statistical results and range analysis of orthogonal test
Fig.3  Factor-indicator trend graph, the factor is: (a) potential fluctuation frequency (f); (b) potential fluctuation amplitude (E); (c) potential fluctuation duty ratio (δ); (d) potential total loading time (tt)
Fig.4  Statistic results of the pit density after various half period times from 0.1 s to 1 h with a total period of 1 d of SWP
Fig.5  Statistic results of pit density on the specimen under SWP condition of the half period of 1 s and various total potential fluctuating times from 0.5 d to 5 d
Fig.6  Statistical results of the pitting density under various upper potentials Eu from -0.90 V to -0.65 V of SWP
Fig.7  Equivalent circuit simulating the steel electrode/solution interface under SWP, where Rs is solution resistance, Rt is charge transfer resistance, Cdl is the capacitance of double charge layer, R1 is the resistance of rust layer, and C1 is the capacitance of the rust layer
FactorDeviation sum of squareDegree of freedomF testF distributionSignificance?test
Af / Hz573898.98820.1363.110---
BE / V440958.30020.1053.110---
Cδ / %1045966.85420.2483.110---
Dtt / d14812245.49123.5113.110*
Error16873069.638---------
Table 3  Variance analysis of orthogonal test
[1] Li X M, Rosas O, Castaneda H. Deterministic modeling of API5L X52 steel in a coal-tar-coating/cathodic-protection system in soil [J]. Int. J. Pres. Ves. Piping., 2016, 146: 161
[2] Xue Z Y, Bi W X, Chen Z H, et al. Situation and outlook for cathodic protection technology of oil & gas pipeline [J]. Oil Gas Storage Trans., 2014, 33: 938
(薛致远, 毕武喜, 陈振华等. 油气管道阴极保护技术现状与展望 [J]. 油气储运, 2014, 33: 938)
[3] Gadala I M, Wahab M A, Alfantazi A. Numerical simulations of soil physicochemistry and aeration influences on the external corrosion and cathodic protection design of buried pipeline steels [J]. Mater. Des., 2016, 97: 287
[4] Fu A Q, Cheng Y F. Effects of alternating current on corrosion of a coated pipeline steel in a chloride-containing carbonate/bicarbonate solution [J]. Corros. Sci., 2010, 52: 612
[5] Zhang Y X, Du Y X, Jiang Z T. Influence of alternating current interference on cathodic protection system of buried pipelines [J]. Corros. Prot., 2013, 34: 350
(张玉星, 杜艳霞, 姜子涛. 交流干扰对埋地管线阴极保护的影响 [J]. 腐蚀与防护, 2013, 34: 350)
[6] Kuang D, Cheng Y F. Understand the AC induced pitting corrosion on pipelines in both high pH and neutral pH carbonate/bicarbonate solutions [J]. Corros. Sci., 2014, 85: 304
[7] Li D D. Study on the interference law of HVDC transmission line to a buried metal pipeline [D]. Chengdu: Southwest Petroleum University, 2014: 2
(李丹丹. 高压直流输电线路对某埋地金属管道的干扰规律研究 [D]. 成都: 西南石油大学, 2014: 2)
[8] Cheng S S, Zhang L J, Yang A H. Influence of subway stray current corrosion on buried metal pipeline [J]. Gas Heat, 2003, 23: 435
(程善胜, 张力君, 杨安辉. 地铁直流杂散电流对埋地金属管道的腐蚀 [J]. 煤气与热力, 2003, 23: 435)
[9] Gupta R K, Tan M Y J, Esquivel J, et al. Occurrence of anodic current and corrosion of steel in aqueous media under fluctuating cathodic protection potentials [J]. Corrosion, 2016, 72: 1243
[10] Liu Z Y, Li X G, Cheng Y F. Electrochemical state conversion model for occurrence of pitting corrosion on a cathodically polarized carbon steel in a near-neutral pH solution [J]. Electrochim. Acta, 2011, 56: 4167
[11] Liu Z Y, Li X G, Cheng Y F. Understand the occurrence of pitting corrosion of pipeline carbon steel under cathodic polarization [J]. Electrochim. Acta, 2012, 60: 259
[12] Liu Z Y, Li X G, Du C W, et al. Local additional potential model for effect of strain rate on SCC of pipeline steel in an acidic soil solution [J]. Corros. Sci., 2009, 51: 2863
[13] Dai M J, Liu J, Huang F, et al. Effect of cathodic protection potential fluctuations on pitting corrosion of X100 pipeline steel in acidic soil environment [J]. Corros. Sci., 2018, 143: 428
[14] Xie F, Wang D, Wu M, et al. Effect of environment factors on corrosion electrochemical behavior of X80 steel welded joint [J]. Heat Treat. Met., 2015, 40(10): 200
(谢飞, 王丹, 吴明等. 环境因素对X80钢焊接接头腐蚀电化学行为的影响 [J]. 金属热处理, 2015, 40(10): 200)
[15] Zhang L, Du C W, Li X G. Effect of temperature, oxygen concentration and pH value on electrochemical behavior of X70 pipeline steel [J]. Heat Treat. Met., 2008, 33(11): 36
(张亮, 杜翠薇, 李晓刚. 温度、pH值和氧浓度对X70管线钢电化学行为的影响 [J]. 金属热处理, 2008, 33(11): 36)
[16] Liu L X, Qiao Y X. Effect of pH value on electrochemical behavior of high nitrogen stainless steel in NaCl solution [J]. Corros. Sci. Prot. Technol., 2014, 26: 132
(刘丽霞, 乔岩欣. pH值对高氮钢在NaCl溶液中腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2014, 26: 132)
[17] Xiao H Z, Xie F, Wu M, et al. Corrosion behavior of X80 pipeline steel under synergistic effect of CO32-, HCO3- and Cl- ions [J]. Mater. Prot., 2017, 50(8): 14
(肖辉宗, 谢飞, 吴明等. X80管线钢在CO32-、HCO3-及Cl-协同作用下的腐蚀行为 [J]. 材料保护, 2017, 50(8): 14)
[18] Dai M J, Liu J, Huang F, et al. Derivation of the mechanistic relationship of pit initiation on pipelines resulting from cathodic protection potential fluctuations [J]. Corros. Sci., 2020, 163: 108226
doi: 10.1016/j.corsci.2019.108226
[1] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[3] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[4] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[6] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[7] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[8] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[9] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[10] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[11] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[12] CHEN Xu, LI Shuaibing, ZHENG Zhongshuo, XIAO Jibo, MING Nanxi, HE Chuan. Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivityat Daqing Area[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[13] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[14] ZHAO Shuyan,TONG Xinhong,LIU Fuchun,WENG Jinyu,HAN En-Hou,LI Xiaohui,YANG Lin. Corrosion Resistance of Three Zinc-rich Epoxy Coatings[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[15] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
No Suggested Reading articles found!