Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (5): 416-424    DOI: 10.11902/1005.4537.2020.002
Current Issue | Archive | Adv Search |
Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere
LIU Haixia1,2, HUANG Feng1,2(), YUAN Wei1,2, HU Qian1,2, LIU Jing1,2
1 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2 Hubei Engineering Technology Research Center of Marine Materials and Service Safety, Wuhan University of Science and Technology, Wuhan 430081, China
Download:  HTML  PDF(15357KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The long-term corrosion behavior of 690 MPa high-strength bridge steel (referred as Q690 steel) in a simulated rural atmosphere was investigated via wet/dry cyclic test with wetting in distilled water and drying in air, as well as electrochemical impedance spectroscopy (EIS), field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), electron probe (EPMA) and other surface testing techniques. The results indicate that the corrosion process of Q690 steel can be differentiated as two stages during the whole corrosion process, namely the accelerated and the decelerated stages. In the early stage of corrosion, the corrosion resistance of Q690 steel with microstructure of lath bainite (LB) is better than that of Corten-A steel with microstructure of ferrite (F) and pearlite (P). In the later stage of corrosion, the enrichment of Cr element and the increase of α-FeOOH in the rust scale of Q690 steel have enhanced the protectiveness of the rust scale, leading to the decrease of the corrosion rate of Q690 steel, hence which shows significantly better corrosion resistance than the Corten-A steel.

Key words:  690 MPa grade bainite steel      rural atmosphere      corrosion resistance     
Received:  06 January 2020     
ZTFLH:  TG174  
Fund: National Key Research and Development Program(2017YFB0303800)
Corresponding Authors:  HUANG Feng     E-mail:  huangfeng@wust.edu.cn

Cite this article: 

LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere. Journal of Chinese Society for Corrosion and protection, 2020, 40(5): 416-424.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.002     OR     https://www.jcscp.org/EN/Y2020/V40/I5/416

SampleCSiMnPSCuCrNiFe
Q6900.060.211.760.005<0.0050.3~0.40.4~0.60.1~0.3Balanced
Corten-A0.070.181.180.0170.0080.210.380.15Balanced
Q2350.140.190.310.0150.00240.016------Balanced
Table 1  Main chemical compositions of three steels (mass fraction / %)
Fig.1  FE-SEM micrographs of Q690 steel (a), Corten-A steel (b) and Q235 steel (c)
Fig.2  Average corrosion rate and relative corrosion of three steels changes with time
Fig.3  Surface topographies of the Q690 (a, b), Corten-A (c, d) and Q235 (e, f) steels after immersion for different time with rust (a, c, e) and without rust (b, d, f)
Fig.4  XRD patterns of the powdered rust of Q690 steel (a), Corten-A steel (b) and Q235 steel (c) after immersion for different time
Fig.5  Semi-quantitative analysis of phase diffraction patterns of the rust
Fig.6  Cross-sectional morphology of Q690 steel rust layer after immersion for 768 h (a) and the distribution of Fe (b), O (c), Cr (d), Ni (e), Cu (f) element individually
Fig.7  Cross-sectional morphology of Corten-A steel rust layer after immersion for 768 h (a) and the distribution of Fe (b), O (c), Cr (d), Ni (e), Cu (f) element individually
Fig.8  Cross-sectional morphology of Q235 steel rust layer after immersion for 768 h (a) and the distribution of Fe (b), O (c), Cr (d), Ni (e), Cu (f) element individually
Fig.9  Bode plots of Q690 steel (a), Corten-A steel (b) and Q235 steel (c) with rust layer formed at the different immersion time
Fig.10  Equivalent circuit simulating for EIS of three steels at 48 h (a), 192 h and 768 h (b) cyclic immer-sion time
SamplesTimehRctΩ·cm2CPEdl10-4 F·cm-2RrustΩ·cm2CPErust10-7 F·cm-2
Q690482013.338.9------
192304820.7663.148.4
76831428.71057.21.6
Corten-A48831.440.9------
192872.121.2255.8296.1
7681789.512.8511.412.7
Q23548609.943.1------
192799.229.5235.2603.5
768932.714.8312.335.6
Table 2  EIS fitting results of three corroded steels at different time
Fig.11  Linear polarization curves of Q690 steel (a), Corten-A steel (b) and Q235 steel (c) with rust layer after immersion for different time
Fig.12  Polarization Rp Values of the three steels with rust layer after immersion for different cyclic time
Fig.13  Corrosion depth-time double logarithmic curves of Q690 steel (a), Corten-A steel (b) and Q235 steel (c)
[1] Cano H, Díaz I, De La Fuente D, et al. Effect of Cu, Cr and Ni alloying elements on mechanical properties and atmospheric corrosion resistance of weathering steels in marine atmospheres of different aggressivities [J]. Mater. Corros., 2018, 69: 8
[2] Liu X Q, Liu Z L, Hu J D, et al. Influence of Cr content on corrosion behaviour of tube pile steel in half-immersion environment [J]. Trans. Indian Inst. Met., 2018, 71: 209
[3] Li D L, Fu G Q, Zhu M Y, et al. Effect of Ni on the corrosion resistance of bridge steel in a simulated hot and humid coastal-industrial atmosphere [J]. Int. J. Miner. Metall. Mater., 2018, 25: 325
[4] Gao Y, Huang Y H, Zheng Z J, et al. Atmospheric corrosion behavior of Q235 steel exposed on transmission tower sites of Guangdong province [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2018, 46(7): 39
(高岩, 黄殷辉, 郑志军等. Q235钢在广东省输电杆塔现场的大气腐蚀行为 [J]. 华南理工大学学报 (自然科学版), 2018, 46(7): 39)
[5] Gu B S, Wang B, Ji X C, et al. Exposure corrosion behavior of economical weathering steel [J]. J. Mater. Prot., 2004, 37(5): 39
(顾宝珊, 汪兵, 纪晓春等. 经济型耐大气腐蚀钢大气曝晒腐蚀性能研究 [J]. 材料保护, 2004, 37(5): 39)
[6] Zhang Y, Liu J, Hunag F, et al. Comparative study of corrosion resistance of three weathering steels for bridges in simulated marine atmospheric environment [J]. J. Wuhan Univ. Sci. Technol., 2018, 41: 401
(张宇, 刘静, 黄峰等. 三种桥梁耐候钢在模拟海洋大气环境中的耐蚀性能比较 [J]. 武汉科技大学学报, 2018, 41: 401)
[7] State Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 19746-2005 Corrosion of metals and alloys—Alternate immersion test in salt solution [S]. Beijing: China Standards Press, 2005
(中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 19746-2005 金属和合金的腐蚀 盐溶液周浸试验 [S]. 北京: 中国标准出版社, 2005)
[8] Ministry of Railways of the people's Republic of China. TB/T 1979-2003 Technical specification for the procurement of atmospheric corrosion resisting steel for railway rolling stock [S]. Beijing: China Railway Press, 2014
(中国人民共和国铁道部. TB/T 1979-2003 铁道车辆用耐大气腐蚀钢订货技术条件 [S]. 北京: 中国铁道出版社, 2014)
[9] Luo R, Wu J, Liu X L, et al. Evolution of rust layers formed on Q235 and 09CuPCrNi-a steels during initial stage of field exposure in two sites of different environment [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 566
(罗睿, 吴军, 柳鑫龙等. Q235和09CuPCrNi-A钢在两种不同大气环境中腐蚀早期锈层演化研究 [J]. 中国腐蚀与防护学报, 2014, 34: 566)
[10] Wang Z Y, Yu Q C, Chen J J, et al. Atmospheric corrosion behavior of P265GH steel and Q235 steel under dry/humid/immersion alternative condition [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 53
(王振尧, 于全成, 陈军君等. 周期干湿浸条件下P265GH钢和Q235钢的大气腐蚀行为 [J]. 中国腐蚀与防护学报, 2014, 34: 53)
[11] Zhang H X, Qi X, Deng C L, et al. Study on corrosion rust layers of low alloy steel in different simulated seawater environment using raman spectroscopy [J]. Equip. Environ. Eng., 2009, 6(1): 30
(张慧霞, 戚霞, 邓春龙等. 不同腐蚀体系中低合金钢锈层的拉曼光谱研究 [J]. 装备环境工程, 2009, 6(1): 30)
[12] Cao X K, Huang F, Huang C, et al. Preparation of graphene nanoplate added zinc-rich epoxy coatings for enhanced sacrificial anode-based corrosion protection [J]. Corros. Sci., 2019, 159: 108120
[13] Sreekanth D, Rameshbabu N, Venkateswarlu K, et al. Effect of K2TiF6 and Na2B4O7 as electrolyte additives on pore morphology and corrosion properties of plasma electrolytic oxidation coatings on ZM21 magnesium alloy [J]. Surf. Coat. Technol., 2013, 222: 31
doi: 10.1016/j.surfcoat.2013.01.056
[14] Nishikata A, Zhu Q J, Tada E. Long-term monitoring of atmospheric corrosion at weathering steel bridges by an electrochemical impedance method [J]. Corros. Sci., 2014, 87: 80
doi: 10.1016/j.corsci.2014.06.007
[15] Han W, Wang J, Wang Z Y, et al. Study on atmospheric corrosion of low alloy steels [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 147
(韩薇, 汪俊, 王振尧等. 碳钢与低合金钢耐大气腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2004, 24: 147)
[16] Ma Y T, Li Y, Wang F H. The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment [J]. Corros. Sci., 2010, 52: 1796
doi: 10.1016/j.corsci.2010.01.022
[17] Hao L, Zhang S X, Dong J H, et al. Evolution of corrosion of MnCuP weathering steel submitted to wet/dry cyclic tests in a simulated coastal atmosphere [J]. Corros. Sci., 2012, 58: 175
doi: 10.1016/j.corsci.2012.01.017
[18] Wang Z F, Liu J R, Wu L X, et al. Study of the corrosion behavior of weathering steels in atmospheric environments [J]. Corros. Sci., 2013, 67: 1
[19] Yamashita M, Miyuki H, Matsuda Y, et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century [J]. Corros. Sci., 1994, 36: 283
[20] Kamimura T, Hara S, Miyuk H, et al. Composition and protective ability of rust layer formed on weathering steel exposed to various environments [J]. Corros. Sci., 2006, 48: 2799
[21] Zou Y, Wang J, Zheng Y Y. Electrochemical techniques for determining corrosion rate of rusted steel in seawater [J]. Corros. Sci., 2011, 53: 208
[22] Zhang Y, Huang F, Hu Q, et al. Effect of micro-phase electrochemical activity on the initial corrosion dynamics of weathering steel [J]. Mater. Chem. Phys., 2020, 241: 122045
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[5] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[6] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[7] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[8] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[9] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[10] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[11] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[12] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[13] Duoyun CHENG,Jinbin ZHAO,Bo LIU,Cheng JIANG,Xiaoqian FU,Xuequn CHENG. Corrosion Behavior of High Nickel and Conventional Weathering Steels Exposed to a Harsh Marine Atmospheric Environment at Maldives[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[14] Delin LAI,Gang KONG,Chunshan CHE. Effect of Sodium Silicate Sealing on Corrosion Resistance of TiO2Conversion Film on Hot-dip Galvanized[J]. 中国腐蚀与防护学报, 2018, 38(6): 607-614.
[15] Ming LIU,Xuequn CHENG,Xiaogang LI,Tianjian LU. Corrosion Resistance Mechanisms of Passive Films Formed on Low Alloy Rebar Steels in Liquor of Cement Extract[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
No Suggested Reading articles found!