Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (2): 150-156    DOI: 10.11902/1005.4537.2015.037
Orginal Article Current Issue | Archive | Adv Search |
Inhibition Effect of Exopolysaccharide of Vibrio Neocaledonicus sp. on Q235 Carbon Steel inSulphuric Acid Solution
Tao XIAO1,2,Moradi Masoumeh2,Zhenlun SONG2,Lijing YANG2,Tao YAN1,2,Lifeng HOU1()
1. College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024,China
2. Key Laboratory of Marine New Materials and Related Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Download:  HTML  PDF(871KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The inhibition effect of exopolysaccharide (EPS) extracted from Vibrio neocaledonicus sp. on carbon steel Q235 has been studied by means of potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electronic microscopy (SEM). The results showed that EPS could inhibit effectively the corrosion for Q235 steel in solution of 0.5 mol/L H2SO4 because of that a film of Fe-EPS could formed on carbon steel during the corrosion process. The inhibition efficiency reached the maximum when the concentration of EPS was 1.0 g/L. The absorption of EPS on Q235 steel was chemisorption and obeyed the Langmuir adsorption isotherm. The composition of EPS was identified by using FTIR.

Key words:  Q235 carbon steel      vibrio      exopolysaccharide      inhibition      chemisorption     

Cite this article: 

Tao XIAO,Moradi Masoumeh,Zhenlun SONG,Lijing YANG,Tao YAN,Lifeng HOU. Inhibition Effect of Exopolysaccharide of Vibrio Neocaledonicus sp. on Q235 Carbon Steel inSulphuric Acid Solution. Journal of Chinese Society for Corrosion and protection, 2016, 36(2): 150-156.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.037     OR     https://www.jcscp.org/EN/Y2016/V36/I2/150

Fig.1  Nyquist (a) and Bode (b, c) plots for Q235 steel immersed in 0.5 mol/L H2SO4 solutions with various concentrations of EPS
Concentration
gL-1
Rs
Ωcm2
Rct
Ωcm2
CPEdl
μFcm-2
L
Hcm2
RL
Ωcm2
n η / % θ
Blank 2.68 38.82 16.5 --- --- 0.80 --- ---
0.2 0.87 156.3 20.3 16.88 58.27 0.87 75.2 0.752
0.4 3.15 165.7 15.8 39.26 73.36 0.83 76.6 0.766
0.8 8.12 240.6 11.4 57.95 78.16 0.86 83.8 0.838
1.0 1.08 242.5 7.7 95.26 81.94 0.87 84.0 0.840
1.2 4.19 89.9 34.8 20.01 24.78 0.80 56.8 0.568
Table 1  Impedance parameters for the corrosion of Q235 steel in 0.5 mol/L H2SO4 solutions with different concentrations of EPS
Fig.2  Equivalent circuit models of EIS in 0.5 mol/L H2SO4 solutions without (a) and with (b) EPS
Fig.3  Polarization curves for Q235 steel immersed in 0.5 mol/L H2SO4 solutions with various concentrations of EPS
Concentration
gL-1
Ecorr.obs
V
I
mAcm-2
bc
Vdec-1
ba
Vdec-1
Rp
Ωcm2
Corrosion rate mma-1 η / %
Blank -0.485 0.4518 -0.053 0.106 2.406 5.228 ---
0.2 -0.472 0.1074 -0.036 0.100 6.429 1.243 76.2
0.4 -0.480 0.1020 -0.066 0.115 14.59 1.159 77.4
0.8 -0.456 0.0943 -0.041 0.134 11.25 0.255 79.1
1.0 -0.456 0.0480 -0.041 0.132 21.65 0.129 89.4
1.2 -0.467 0.2526 -0.063 0.109 5.296 2.923 44.1
Table 2  Potentiodynamic polarization parameters for the corrosion of Q235 steel in 0.5 mol/L H2SO4 solutions with different concentrations of EPS
Fig.4  Surface morphologies of Q235 steel immersed in 0.5 mol/L H2SO4 solutions with 0 g/L (a), 0.8 g/L (b), 1.0 g/L (c) and 1.2 g/L (d) EPS for 2 h
Fig.5  FT-IR spectrum of EPS
Fig.6  Langmuir adsorption isotherm of EPS on Q235 steel in 0.5 mol/L H2SO4 solutions at 25 ℃
[1] Lozano I, Mazario E, Likhanova N V, et al.Corrosion behaviour of API 5LX52 steel in HCl and H2SO4 media in the presence of 1,3-dibencilimidazolio acetate and 1,3-dibencilimidazolio dodecanoate ionic liquids as inhibitors[J]. Mater. Chem. Phys., 2014, 147: 191
[2] Zhao J M, Li J.Corrosion inhibition performance of carbon steel in brine solution containing H2S and CO2 by novel gemini surfactants[J]. Acta Phys.-Chim. Sin., 2012, 28(3): 623
[2] (赵景茂, 李俊. 新型双子表面活性剂在H2S和CO2盐水溶液中对碳钢的缓蚀性能[J]. 物理化学学报, 2012, 28(3): 623)
[3] Banerjee S, Srivasrava V, Singh M M.Chemically modified natural polysaccharide as green corrosion inhibitor for mild steel in acidic medium[J]. Corros. Sci., 2012, 59: 35
[4] Umoren S A, Ogbobe O, Igwe I O, et al.Inhibition of mild steel corrosion in acidic medium using synthetic and naturally occurring polymers and synergistic halide additives[J]. Corros. Sci., 2008, 50:1998
[5] Lee W, Lewandowski Z, Nielsen P H, et al.Role of sulfate-reducing bacteria in corrosion of mild steel: A review[J]. Biofouling, 1995, 8: 165
[6] Jin J T, Wu G X, Zhang Z H, et al.Effect of extracellular polymeric substances on corrosion of cast iron in the reclaimed wastewater[J]. Bioresour. Technol., 2014, 165: 162
[7] Yildiz F H, Visick K L.Vibrio biofilms: so much the same yet so different[J]. Trends Microbiol., 2009, 17: 109
[8] Kavita K, Mishra A, Jha B.Isolation and physico-chemical characterisation of extracellular polymeric substances produced by the marine bacterium Vibrio parahaemolyticus[J]. Biofouling, 2011, 27(3): 309
[9] Cao C N, Zhang J Q.An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002
[9] (曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社,2002)
[10] Farag A A, Hegazy M A.Synergistic inhibition effect of potassium iodide and novel Schiff bases on X65 steel corrosion in 0.5 M H2SO4[J]. Corros. Sci., 2013, 74: 168
[11] Guo W J, Chen S H, Huang B D, et al.Protection of self-assembled monolayers formed from triethyl phosphate and mixed self-assembled monolayers from triethyl phosphate and cetyltrimethyl ammonium bromide for copper against corrosion[J]. Electrochim. Acta, 2006, 52(1): 108
[12] Ganesh V, Pal S K, Kumar S, et al.Self-assembled monolayers (SAMs) of alkoxycyanobiphenyl thiols on gold—A study of electron transfer reaction using cyclic voltammetry and electrochemical impedance spectroscopy[J]. J. Colloid Interface Sci., 2006, 296:195
[13] Nwodo U U, Okoh A I.Characterization and ?occulation properties of biopolymeric ?occulant (glycosaminoglycan) produced by Cellulomonas sp. Okoh[J]. J. Appl. Microbiol., 2013, 114: 1325
[14] Kavita K, Mishra A, Jha B.Extracellular polymeric substances from two biofilm forming Vibrio species: Characterization and applications[J]. Carbohydr. Polym., 2013, 94: 882
[15] Iye A, Mody K, Jha B.Characterization of an exopolysaccharide produced by a marine enterobacter cloacae[J]. Indian J. Exp. Biol., 2005, 43: 467
[16] Freitas F, Alves V D, Pais J, et al. Characterization of an extracellular polysaccharide produced by a Pseudomonas strain grown on glycerol[J]. Bioresour. Technol., 2009, 100: 859
[17] Cao B, Shi L, Brown R, et al.Extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms: Characterization by infrared spectroscopy and proteomics[J]. Environ. Microbiol., 2011, 13: 1018
[18] Bhaskar P V, Bhosle N B.Bacterial extracellular polymeric substances (EPS): A carrier of heavy metals in the marine food-chain[J]. Environ. Int., 2006, 32: 191
[19] Moon S H, Park C S, Kim Y J, et al.Biosorption isotherms of Pb (II) and Zn (II) on Pestan, an extracellular polysaccharide, of Pestalotiopsis sp. KCTC 8637P[J]. Process Biochem., 2006, 41: 312
[20] Zarrouk A, Hammouti B, Zarrok H, et al.N-containing organic compound as an effective corrosion inhibitor for copper in 2M HNO3: Weight loss and quantum chemical study[J]. Der Pharm.Chem., 2011, 3(5): 263
[21] Atkins P W.Physical Chemistry [M]. 6th Ed. Oxford: Oxford University Press, 1999
[22] Chongdar S, Gunasekaran G, Kumar P.Corrosion inhibition of mild steel by aerobic biofilm[J]. Electrochim. Acta, 2005, 50: 4655
[23] Dong Z H, Liu T, Liu H F.Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion[J]. Biofouling, 2011, 27(5): 487
[1] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[2] LU Shuang, REN Zhengbo, XIE Jinyin, LIU Lin. Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[3] LI Xianghong, DENG Shuduan, XU Xin. Inhibition Action of Cassava Starch Ternary Graft Copolymer on Steel in H2SO4 Solution[J]. 中国腐蚀与防护学报, 2020, 40(2): 105-114.
[4] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[5] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[6] Peipei KONG, Nali CHEN, Dezhong BAI, Yueyi WANG, Yong LU, Huixia FENG. Research Progress on Preparation and Corrosion Inhibition Performance of Chitosan Derivatives[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[7] Zheng LIU, Haiying LI, Hao WANG, Yong ZHAO, Siwei XIE, Shufen ZHANG. Molecular Dynamics Simulation of Adsorption Behavior of Schiff Base Surfactants on Zn Surface in Aqueous Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[8] Wanjun PENG, Jiheng DING, Hao CHEN, Haibin YU. Corrosion Inhibition of Bio-based Inhibitor Furfuryl Glycidyl Ether[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[9] Sai YE, Moradi Masoumeh, Zhenlun SONG, Fangqin HU, Zhaohui SHUN, Jianping LONG. Inhibition Effect of Pseudoalteromonas Piscicida on Corrosion of Q235 Carbon Steel in Simulated Flowing Seawater[J]. 中国腐蚀与防护学报, 2018, 38(2): 174-182.
[10] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[11] Haiyuan WANG, Yinghui WEI, Huayun DU, Baosheng LIU, Chunli GUO, Lifeng HOU. Corrosion Inhibition and Adsorption Behavior of Green Corrosion Inhibitor SDDTC on AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2018, 38(1): 62-67.
[12] Juna CHEN,Jiajia WU,Peng WANG,Dun ZHANG. Effect of Desulfovibrio sp. and Vibrio Alginolyticus on Corrosion Behavior of 907 Steel in Seawater[J]. 中国腐蚀与防护学报, 2017, 37(5): 402-410.
[13] Yongsheng HAO,Abdullahi SANI Luqman,Lixin SONG,Guobao XU,Tiejun GE,Qinghong FANG. Corrosion Inhibition Effect of Phytic Acid Conversion Coating Formed on Q235 Carbon Steel in Acidic and Neutral Solutions[J]. 中国腐蚀与防护学报, 2016, 36(6): 549-558.
[14] Hongwei LIU,Fuping XIONG,Yalin LV,Chengxuan GE,Hongfang LIU,Yulong HU. CO2 Corrosion Inhibition of Carbon Steel by Dodecylamine under Flow Conditions[J]. 中国腐蚀与防护学报, 2016, 36(6): 645-651.
[15] Xiang ZUO,Yufeng JIANG,Ting CHI,Xin HU,Dongmei CAO,Feng CAI. Synthesis and Performance of New Benzotriazole Derivatives with Long Alkyl Chain as Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2016, 36(5): 415-420.
No Suggested Reading articles found!