Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (1): 20-24    DOI: 10.11902/1005.4537.2015.006
Orginal Article Current Issue | Archive | Adv Search |
Condensate Corrosion Behavior of Stainless Steels for Automotive Mufflers
Hui ZHANG,Guoli ZHANG,Xing LIU,Congcong CHEN,Moucheng LI()
Institute of Materials, Shanghai University, Shanghai 200072, China
Download:  HTML  PDF(2493KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

One oxidation-condensate immersion cyclic method was used to simulate muffler internal service environment under the long-distance driving conditions. The corrosion behavior of type 409, 429, 436, 439 and 441 stainless steels was investigated in the condensate solutions. The results show that the oxidation/corrosion product films on the surfaces of these five steels are mainly composed of Cr2O3 and Fe2O3. The alloying elements Cr and Mo play the most important role in the resistance of product films and charge transfer processes on steel surfaces. Pit depth decreases in order of 409, 439, 441, 429 and 436, but there is small depth difference between 439 and 441 as well as 429 and 436. Moreover, these five stainless steels show good pit resistance in the simulated processes of long-distance driving trips.

Key words:  automotive muffler      condensate corrosion      oxidation      stainless steel      long-distancedriving     

Cite this article: 

Hui ZHANG,Guoli ZHANG,Xing LIU,Congcong CHEN,Moucheng LI. Condensate Corrosion Behavior of Stainless Steels for Automotive Mufflers. Journal of Chinese Society for Corrosion and protection, 2016, 36(1): 20-24.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.006     OR     https://www.jcscp.org/EN/Y2016/V36/I1/20

Steel C Si Mn S P Cr Ni Mo Nb Ti N Fe
409 0.009 0.35 0.21 0.001 0.023 11.40 0.09 0.005 0.14 0.14 0.0074 Bal.
429 0.011 0.94 0.93 0.001 0.025 14.26 0.22 0.45 0.40 0.20 0.0092 Bal.
439 0.011 0.40 0.25 0.002 0.017 16.76 0.08 0.004 0.021 0.23 0.0076 Bal.
436 0.012 0.42 0.28 0.002 0.018 17.61 0.08 0.75 0.01 0.22 0.0095 Bal.
441 0.009 0.44 0.27 0.001 0.028 18.18 0.13 0.005 0.42 0.17 0.0063 Bal.
Table 1  Chemical compositions of stainless steels used in the experiments(mass fraction / %)
Fig.1  Plots of corrosion potential vs time for five stainless steels after 100 cycles test in condensate solution
Fig.2  Nyquist (a) and Bode (b) plots for five stainless steels in condensate solution after 100 cycles test
Fig.3  SEM morphologies of 409 (a), 429 (b), 439 (c), 436 (d) and 441 (e) stainless steels after the cyclic tests
Fig.4  XRD spectra of different specimens after the cyclic tests
Fig.5  Maximum and average values of pit depth for different specimens after the cyclic tests
Fig.6  Equivalent circuit model for the corrosionsystems
Fig.7  Fitted values of impedance parameters for different specimens after 100 cycles test
[1] Inoue Y, Kikuchi M.Present and future trends of stainless steel for automotive exhaust system [R]. Nippon Steel Tech. Rep., 2003, (88): 62
[2] Sato E, Tanoue T.Present and future trends of materials for automotive exhaust system [R]. Nippon Steel Tech. Rep., 1995, (64): 13
[3] Bi H Y, Wu Y, Li X.Application and failure evaluation of ferritic stainless steels for automotive exhaust systems[J]. Baosteel Technol. Res., 2010, (2): 7
[3] (毕洪运, 武勇, 李鑫. 汽车排气系统用铁素体不锈钢的应用及腐蚀失效评价[J]. 宝钢技术, 2010, (2): 7)
[4] Miyazaki A, Hirasawa J, Satoh S.Advanced stainless steels for stricter regulations of automotive exhaust gas [R]. Kawasaki Steel Tech. Rep., 2000, (43): 21
[5] Ruan W H, Wang S D, Li M C, et al.Corrosion behavior of 409 ferritic stainless steel in condensate solution of automotive mufflers[J]. Corros. Sci. Prot. Technol., 2012, 24(4): 301
[5] (阮伟慧, 王士栋, 李谋成等. 409不锈钢在消声器冷凝液中的腐蚀行为[J]. 腐蚀科学与防护技术, 2012, 24(4): 301)
[6] Liu X, Huang Y J, Liu X Q, et al.Galvanizing treatment of aluminum sacrificial anode surface and its electrochemical performance[J]. Corros. Prot., 2012, 33(1): 1
[6] (刘欣, 黄印俊, 刘学庆等. 铝合金牺牲阳极的镀锌处理及其电化学性能[J]. 腐蚀与防护, 2012, 33(1): 1)
[7] Li M C, Wang S D, Ma R Y, et al.Effect of cyclic oxidation on electrochemical corrosion of type 409 stainless steel in the simulated muffler condensates[J]. J. Solid State Electrochem., 2012, 16(9): 3059
[8] Han P H, Xu Z H, Wang C P, et al.Condensate corrosion behavior of type 409 stainless steel in simulated automotive muffler environments[J]. Int. J. Electrochem. Sci., 2014, 9: 3786
[9] Bi H Y, Pan G Q, Li X.Development of ferritic stainless steels for automotive exhaust systems by Baosteel[J]. Baosteel Technol. Res., 2011, (2): 6
[9] (毕洪运, 潘国强, 李鑫. 宝钢汽车排气系统用铁素体不锈钢产品开发[J]. 宝钢技术, 2011, (2): 6)
[10] AK Steel Corporation.Aluminized steel type 1 stainless 409 and 439 [R]
[11] Luo H, Dong C F, Li X G, et al.The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride[J]. Electrochim. Acta, 2012, 64: 211
[12] Montemor M F, Simoes A M P, Ferreira M G S, et al. The role of Mo in the chemical composition and semiconductive behavior of oxide films formed on stainless steels[J]. Corros. Sci., 1999, 41: 17
[13] Kolotyrkin Y M.The electrochemistry of alloys[J]. Electrochim. Acta, 1980, 25(1): 89
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[5] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[6] LIU Xiao, WANG Hai, ZHU Zhongliang, LI Ruitao, CHEN Zhenyu, FANG Xudong, XU Fanghong, ZHANG Naiqiang. Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[7] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[8] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[9] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[10] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[11] FANG Xudong, LIU Xiao, XU Fanghong, LI Ruitao, ZHU Zhongliang, ZHANG Naiqiang. Oxidation Behavior in Supercritical Water of Domestic Austenitic Steel C-HRA-5 for Uultra-supercritical Power Stations[J]. 中国腐蚀与防护学报, 2020, 40(3): 266-272.
[12] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[13] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[14] ZHENG Yanxin, LIU Ying, SONG Qingsong, ZHENG Feng, JIA Yuchuan, HAN Peide. High-temperature Oxidation Behavior and Wear Resistance of Copper-based Composites with Reinforcers of C, ZrSiO4 and Fe[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[15] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
No Suggested Reading articles found!