Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (3): 266-272    DOI: 10.11902/1005.4537.2019.083
Current Issue | Archive | Adv Search |
Oxidation Behavior in Supercritical Water of Domestic Austenitic Steel C-HRA-5 for Uultra-supercritical Power Stations
FANG Xudong1, LIU Xiao2, XU Fanghong1,3, LI Ruitao2, ZHU Zhongliang2, ZHANG Naiqiang2()
1 Key Laboratory of Advanced Stainless Steel Materials, Taiyuan Iron and Steel (Group) Co. , Ltd. , Taiyuan 030003, China
2 Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, North China Electric Power University, Beijing 102206, China
3 Technology Center of Shanxi Taigang Stainless Steel Co. , Ltd. , Taiyuan 030003, China
Download:  HTML  PDF(5200KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The oxidation behavior of austenitic stainless steel C-HRA-5 was studied in 650 ℃/25 MPa and 700 ℃/25 MPa supercritical water. Then its oxidation products were characterized by means of SEM, EDS, XRD and Raman spectroscopy in terms of the morphology and composition. Results show that a double layered oxide scale rich in Fe and Cr was formed on C-HRA-5 steel after oxidation test in the supercritical water, while a thin internal oxidation transition zone was also formed between the outer oxide scale and the matrix. As the temperature increases, the oxidation weight gain rate of C-HRA-5 increases gradually, and the oxidation weight gain rate at 700 ℃ is greater than the that at 650 ℃. The oxidation kinetics follows approximately parabolic and cubic law at 650 and 700 ℃, respectively.

Key words:  austenitic steel      oxidation      supercritical water      oxidation behavior     
Received:  17 June 2019     
ZTFLH:  TK245  
  TM621  
Fund: Shanxi Municipal Project(2018101014);Science and Technology Program of Beijing(Z181100005218006);Beijing Natural Science Foundation(2194085)
Corresponding Authors:  ZHANG Naiqiang     E-mail:  zhnq@ncepu.edu.cn

Cite this article: 

FANG Xudong, LIU Xiao, XU Fanghong, LI Ruitao, ZHU Zhongliang, ZHANG Naiqiang. Oxidation Behavior in Supercritical Water of Domestic Austenitic Steel C-HRA-5 for Uultra-supercritical Power Stations. Journal of Chinese Society for Corrosion and protection, 2020, 40(3): 266-272.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.083     OR     https://www.jcscp.org/EN/Y2020/V40/I3/266

Fig.1  C-HRA-5 steel oxidation mass gain curves in 650 ℃, 700 ℃ and 25 MPa supercritical water
Fig.2  Surface morphologies of C-HRA-5 steel in supercritical water after oxidation for 200 h at 650 ℃ (a), 1000 h at 650 ℃ (b), 200 h at 700 ℃ (c) and 1000 h at 700 ℃ (d)
Fig.3  EDS results of position 1 (a) and position 2 (b) in Fig.2b, position 1 (c) and position 2 (d) in Fig.2d
Fig.4  Surface morphologies of C-HRA-5 steel oxides oxidized in supercritical water at 700 ℃for different times: (a) outer oxide layer for 200 h, (b) inner oxide layer for 200 h, (c) outer oxide layer for 1000 h, (d) inner oxide layer for 1000 h
Fig.5  XRD spectra of C-HRA-5 steel oxidized for 1000 h in supercritical water at 650 ℃ (a) and 700 ℃ (b)
Fig.6  Raman diagram of C-HRA-5 steel oxidized for 1000 h in supercritical water at 650 ℃ (a) and 700 ℃ (b)
No.Fe2O3Cr2O3FeCr2O4
1740609693*
2650*551*573
3505530478
4380397340
Table 1  Raman spectral characteristic peaks of three Fe-Cr oxides
Fig.7  Cross-sectional SEM images (a, b) and elemental distribution of oxide film (c, d) on C-HRA-5 steel exposed to SCW for 1000 h at 650 ℃ (a, c) and at 700 ℃ (b, d)
[1] Patel S J, Debarbadillo J J, Baker B A, et al. Nickel base superalloys for next generation coal fired AUSC power plants [J]. Proced. Eng., 2013, 55: 246
[2] Xu H, Yuan J, Zhu Z L, et al. Oxidation behavior of Ferritic-martensitic steel P92 exposed to supercritical water at 600 ℃/25 MPa [J]. J. Chin. Soc. Corros. Prot., 2014, 34(2): 119
(徐鸿, 袁军, 朱忠亮等. 铁素体-马氏体P92钢在600 ℃/25 MPa超临界水中的氧化特性 [J]. 中国腐蚀与防护学报, 2014, 34(2): 119)
[3] Ren S Y, Li B, Zhao G M, et al. Characteristics and application progress of supercritical fluids [J]. Sci. Technol. Prospect, 2016, 26(4): 178
(任松宇, 李斌, 赵光明等. 超临界流体的特性及其应用进展 [J]. 科技展望, 2016, 26(4): 178)
[4] Zhang N Q, Li B R, Bai Y, et al. Oxidation of austenitic steel TP347HFG exposed to supercritical water with different dissolved oxygen concentration [J]. Appl. Mech. Mater., 2011, 148/149: 1179
[5] Yang W D. Reactor Materials Science [M]. Beijing: Atomic Energy Press, 2000: 195
(杨文斗. 反应堆材料学 [M]. 北京: 原子能出版社, 2000: 195)
[6] Fang X D, Li Y, Xia Y, et al. Effect of cold rolling process on microstructure and mechanical properties of C-HRA-5 tubes [J]. Steel Roll., 2017, 34(6): 38
(方旭东, 李阳, 夏焱等. 冷轧工艺对C-HRA-5管材组织及力学性能的影响 [J]. 轧钢, 2017, 34(6): 38)
[7] Luo X, Long C S, Miao Z, et al. Uniform corrosion of stainless steel in supercritical water [A]. Academic exchange meeting of nuclear materials branch of Chinese nuclear society [C]. Jiangyou, 2007: 369
(罗新, 龙冲生, 苗志等. 超临界水中不锈钢的均匀腐蚀研究 [A]. 中国核学会核材料分会2007年度学术交流会论文汇编 [C]. 江油, 2007: 369)
[8] Zhang X. Properties of austenitic heat-resistant steel Sanicro25 for ultra-supercritical boilers [J]. Power Equip., 2015, 29: 439
(张显. 超超临界锅炉用奥氏体耐热钢Sanicr025的性能 [J]. 发电设备, 2015, 29: 439)
[9] Wang Y, Sui X B, Jin S Z. Oxidation characteristic of high nitrogen austenitic stainless steel Cr18Mn18 at high temperature [J]. J. Changchun Univ. Technol., 2017, 38(4): 381
(王宇, 隋小波, 金松哲. Cr18Mn18高氮奥氏体不锈钢高温氧化特性 [J]. 长春工业大学学报, 2017, 38(4): 381)
[10] Otsuka N, Shida Y, Fujikawa H. Internal-external transition for the oxidation of Fe-Cr-Ni austenitic stainless steels in steam [J]. Oxid. Met., 1989, 32: 13
[11] Hansson A N, Danielsen H K, Grumsen F B, et al. Microstructural investigation of the oxide formed on TP 347H FG during long-term steam oxidation [J]. Mater. Corros., 2010, 61: 665
[12] Gómez-Briceño D, Blázquez F, Sáez-Maderuelo A. Oxidation of austenitic and ferritic/martensitic alloys in supercritical water [J]. J. Supercrit. Fluids, 2013, 78: 103
doi: 10.1016/j.supflu.2013.03.014
[13] Behnamian Y, Mostafaei A, Kohandehghan A, et al. A comparative study on the oxidation of austenitic alloys 304 and 304-oxide dispersion strengthened steel in supercritical water at 650 ℃ [J]. J. Supercrit. Fluids, 2017, 119: 245
doi: 10.1016/j.supflu.2016.10.002
[14] Was G S, Teysseyre S, Jiao Z. Corrosion of austenitic alloys in supercritical water [J]. Corrosion, 2006, 62: 989
[15] Wright I G, Pint B A. An assessment of the high temperature oxidation behavior of Fe-Cr steels in water vapor and steam [A]. CORROSION 2002 [C]. Denver, Colorado, 2002
[16] Wang J B. Oxide behavor research of Super304H for (Ultra) supercritical boiler [D]. Harbin: Harbin Institute of Technology, 2016
王江滨. 超(超) 临界锅炉Super304H不锈钢氧化特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016)
[17] Ouyang D G, Jiang Y H, Luo A Z. The development in oxidation nature of steel [J]. Ind. Heat., 2007, 36(6): 8
(欧阳德刚, 蒋扬虎, 罗安智. 钢氧化特性的研究动态 [J]. 工业加热, 2007, 36(6): 8)
[18] Qiao Y X, Wang S, Gao Y J, et al. Corrosion behavior of ferritic-martensitic steel P92 in supercritical water [J]. J. Iron Steel Res., 2016, 28(8): 57
doi: 10.13228/j.boyuan.issn1001-0963.20150397
(乔岩欣, 王硕, 高宇键等. 铁素体-马氏体钢P92在超临界水中的腐蚀行为 [J]. 钢铁研究学报, 2016, 28(8): 57)
[19] Yin K J, Qiu S Y, Rui T, et al. Corrosion behavior of ferritic/martensitic steel P92 in supercritical water [J]. J. Supercrit. Fluids, 2009, 50: 235
doi: 10.1016/j.supflu.2009.06.019
[20] Laverde D, Gómez-Acebo T, Castro F. Continuous and cyclic oxidation of T91 ferritic steel under steam [J]. Corros. Sci., 2004, 46: 613
doi: 10.1016/S0010-938X(03)00173-2
[21] Chen Y, Sridharan K, Allen T. Corrosion behavior of ferritic-martensitic steel T91 in supercritical water [J]. Corros. Sci., 2006, 48: 2843
[22] Ehlers J, Young D J, Smaardijk E J, et al. Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments [J]. Corros. Sci., 2006, 48: 3428
[23] Ampornrat P. Determination of oxidation mechanisms of ferritic-martensitic alloys in supercritical water [D]. Michigan, USA: University of Michigan, 2011
[24] Zhu F W, Zhang L F, Qiao P P, et al. Corrosion behaviors of candidate materials for supercritical-cooled water reactor [J]. Nucl. Power Eng., 2009, 30(5): 62
(朱发文, 张乐福, 乔培鹏等. 超临界水堆候选材料的腐蚀特性研究 [J]. 核动力工程, 2009, 30(5): 62)
[25] Stellwag B. The mechanism of oxide film formation on austenitic stainless steels in high temperature water [J]. Corros. Sci., 1998, 40: 337
doi: 10.1016/S0010-938X(97)00140-6
[26] Chang K H, Huang J H, Yan C B, et al. Corrosion behavior of Alloy 625 in supercritical water environments [J]. Prog. Nucl. Energy, 2012, 57: 20
[27] Zhang Q, Tang R, Yin K J, et al. Corrosion behavior of Hastelloy C-276 in supercritical water [J]. Corros. Sci., 2009, 51: 2092
[28] Rodriguez D, Merwin A, Karmiol Z, et al. Surface chemistry and corrosion behavior of Inconel 625 and 718 in subcritical, supercritical, and ultrasupercritical water [J]. Appl. Surf. Sci., 2017, 404: 443
[29] Zhu Z L, Xu H, Khan H I, et al. Effect of exposure temperature on oxidation of austenitic steel HR3C in supercritical water [J]. Oxid. Met., 2019, 91: 77
doi: 10.1007/s11085-018-9879-9
[30] Halvarsson M, Tang J E, Asteman H, et al. Microstructural investigation of the breakdown of the protective oxide scale on a 304 steel in the presence of oxygen and water vapour at 600 ℃ [J]. Corros. Sci., 2006, 48: 2014
doi: 10.1016/j.corsci.2005.08.012
[31] Asteman H, Svensson J E, Norell M, et al. Influence of water vapor and flow rate on the high-temperature oxidation of 304L; effect of chromium oxide hydroxide evaporation [J]. Oxid. Met., 2000, 54: 11
doi: 10.1023/A:1004642310974
[1] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[2] LIU Xiao, WANG Hai, ZHU Zhongliang, LI Ruitao, CHEN Zhenyu, FANG Xudong, XU Fanghong, ZHANG Naiqiang. Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[3] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[4] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[5] ZHENG Yanxin, LIU Ying, SONG Qingsong, ZHENG Feng, JIA Yuchuan, HAN Peide. High-temperature Oxidation Behavior and Wear Resistance of Copper-based Composites with Reinforcers of C, ZrSiO4 and Fe[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[6] XU Xunhu,HE Cuiqun,XIANG Junhuai,WANG Ling,ZHANG Honghua,ZHENG Xiaodong. High Temperature Oxidation Behavior of Co-20Re-25Cr-1Si Alloy in 0.1 MPa Pure Oxygen[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[7] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[8] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[9] AI Peng,LIU Lixiang,LI Xiaogang,JIANG Wentao. Influence of TiAlSiN Coatings on High Temperature Oxidation Resistance of γ-TiAl Based Alloys[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[10] Yunhai MA. Effect of Shot Peening on Oxidation Resistance of Super 304H Steel in Supercritical Steam[J]. 中国腐蚀与防护学报, 2019, 39(3): 245-252.
[11] Junjie XIA,Hongzhi NIU,Min LIU,Huazhen CAO,Guoqu ZHENG,Liankui WU. Enhancement of High Temperature Oxidation Resistance of Ti48Al5Nb Alloy via Anodic Anodization in NH4F Containing Ethylene Glycol[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[12] Dongbai XIE,Youyu ZHOU,Jintao LU,Wen WANG,Shenglong ZHU,Fuhui WANG. Effect of Al/Si Content on Corrosion of Ni-based Alloys in Supercritical Water[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.
[13] Ling WANG,Junhuai XIANG,Honghua ZHANG,Songlin QIN. High Temperature Oxidation Behavior of Three Co-20Re-xCr Alloys in 3.04×10-5 Pa Oxygen at 1000 and 1100 ℃[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[14] Hao CHEN,Qing CHEN,Li XIN,Long SHI,Shenglong ZHU,Fuhui WANG. Preparation and High Temperature Corrosion Behavior of Aluminized Nanocrystalline Coating on DD98M Alloy[J]. 中国腐蚀与防护学报, 2019, 39(1): 59-67.
[15] Gaohong CHEN,Yuansen HU,Mei YU,Jianhua LIU,Guoai LI. Effect of Sulfuric Acid Anodizing on Mechanical Properties of 2E12 Al-alloy[J]. 中国腐蚀与防护学报, 2018, 38(6): 579-586.
No Suggested Reading articles found!