Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (1): 25-30    DOI: 10.11902/1005.4537.2015.099
Orginal Article Current Issue | Archive | Adv Search |
Effect of Grain Size on Susceptibility to Intergranular Corrosion of 316LN Stainless Steel
Xinyuan PENG1,2(),Xianliang ZHOU1,2,Xiaozhen HUA2
1. School of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2. Key Laboratory for Microstructural Control of Metallic Materials of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, China
Download:  HTML  PDF(4648KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of grain size on the susceptibility to intergranular corrosion of 316LN stainless steel was investigated by means of electrochemical potentiokinetic reactivation test and electronic work function measurement, as well as microstructure characterization. Steel samples of various grain sizes were produced by heat treating the steel at 1100 ℃ for different duration. The result showed that the degree of sensitization decreases with increasing grain size; corrosion pits occur at grain boundaries and thereby form a network-like pits-chain for samples of fine grains. In the contrast, no obvious corrosion occurred on samples of coarse grain. The results of electronic work function measurement imply that the surface electronic density of states and charge density distributions for steel of coarse grains are much stable than that of fine grains.

Key words:  electrochemical potentiokinetic reactivation      grain size      intergranular corrosion     

Cite this article: 

Xinyuan PENG,Xianliang ZHOU,Xiaozhen HUA. Effect of Grain Size on Susceptibility to Intergranular Corrosion of 316LN Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2016, 36(1): 25-30.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.099     OR     https://www.jcscp.org/EN/Y2016/V36/I1/25

Fig.1  Microstructures of samples treated at 1100 ℃ for 10 min (a), 60 min (b), 240 min (c) and 600 min (d)
Solution
treatment time / min
Maximum
grain size /μm
Average
grain size /μm
10 35 22
60 56 42
240 114 96
600 212 193
Table 1  Grain size of samples treated at 1100 ℃ for different time
Fig.2  Microstructures of samples with various grain sizes after sensitized: (a) 22 μm; (b) 42 μm; (c) 96 μm; (d) 193 μm
Fig.3  SEM images and EDS results of sample with the grain size of 96 μm after sensitized: (a) grain boundary morphology; (b) magnified image of circle area in Fig.3a; (c) EDS result of matrix; (d) EDS result of precipitates
Average grain size / μm Ir / mA Ia / mA Rr / %
22 9.50 22.5 42.22
42 12.80 79.3 16.14
96 1.30 114.0 1.14
193 0.03 39.6 0.07
Table 2  Intergranular corrosion susceptibility of samples with various grain sizes
Fig.4  DLEPR curves of 316LN stainless steel with various grain sizes
Fig.5  Surface topographies of 316LN stainless steel with various grain sizes after DLEPR: (a) 22 μm; (b) 96 μm
Fig.6  EWF with various grain sizes of 316LN stainless steel: (a) 22 μm; (b) 96 μm
[1] Song S K, Liu Z Y, Zhen J N, et al.Study on AP1000 main piping of the third generation nuclear power[J]. Heavy Casting Forging, 2011, (1): 1
[1] (宋树康, 刘志颖, 郑建能等. 第三代APl000核电主管道的研制[J]. 大型铸锻件, 2011, (1): 1)
[2] Lu H X.Research and development of AP1000 reactor coolant pipe in china[J]. Shanghai Met., 2010, 32(4): 29
[2] (卢华兴. APl000核电站主管道国产化研制进展[J]. 上海金属, 2010, 32(4): 29)
[3] Zhang S L, Li M J, Wang X B, et al.Intergranular corrosion of 18-8 austenitic stainless steel[J]. J. Chin. Soc. Corros. Prot., 2007, 27(2): 124
[3] (张述林, 李敏娇, 王晓波等. 18-8奥氏体不锈钢的晶间腐蚀[J]. 中国腐蚀与防护学报, 2007, 27(2): 124)
[4] Miyaji N, Abe Y, Ukai S, et al. Post-irradiation creep rupture properties of FBR grade 316 SS structural material [J]. J. Nucl. Mater., 1999, 271/272: 173
[5] Yae Kina A, Souza V M, Tavares S S M, et al. Microstructure and intergranular corrosion resistance evaluation of AISI 304 steel for high temperature service[J]. Mater. Charact., 2008, 59: 651
[6] Onchi T, Dohi K, Soneda N, et al.Mechanism of irradiation assisted stress corrosion crack initiation in thermally sensitized 304 stainless steel[J]. J. Nucl. Mater., 2005, 340: 219
[7] Li S X, Li L, Yu S R, et al.Investigation of intergranular corrosion of 316L stainless steel diffusion bonded joint by electrochemical potentiokinetic reactivation[J]. Corros. Sci., 2011, 53(1): 99
[8] Singh R, Chattoraj I, Kumar A, et al. The effects of cold working on sensitization and intergranular corrosion behavior of AISI 304 stainless steel [J]. Metall. Mater. Trans., 2003, 34(11)A: 2441
[9] Zha X Q, Liang J, Zhang X Y, et al.Applied study of electrochemical potentiokinetic reactivation method[J]. Electrochemistry, 2011, 17(3): 347
[9] (查小琴, 梁健, 张欣耀等. 电化学动电位再活化法 (EPR法) 的应用研究[J]. 电化学, 2011, 17(3): 347)
[10] China National Standardization Management Committee. Corrosion of metals and alloys-Electrochemical potentiokin-etic reactivation measurement using the double loop method [S]. Beijing: Standards Press of China, 2012
[10] (中国国家标准化管理委员会. GB/T 29088-2012金属和合金的腐蚀-双环电化学动电位再活化测量方法 [S] . 北京: 中国标准出版社, 2012)
[11] Luo H, Xiang D, Guo X F.The relation between austenitic stainless steel crystal grain size and speed of intercrystalline corrosion[J]. J. Shangdong Jianzhu Univ., 2008, 23(5): 406
[11] (罗辉, 项东, 郭晓斐. 奥氏体不锈钢晶粒度对晶间腐蚀速度的影响[J]. 山东建筑大学学报, 2008, 23(5): 406)
[12] Yu X, Chen S, Liu Y, et al.A study of intergranular corrosion of austenitic stainless steel by electrochemical potentio- dynamic reactivation, electron back-scattering diffraction and cellular automaton[J]. Corros. Sci., 2010, 52(6): 1939
[13] Yu S R, He Y N, Li S X, et al.Effect of grain size on susceptibility to intergranular corrosion for austenitic stainless steel[J]. J. Chin. Soc. Corros. Prot., 2013, 33(1): 70
[13] (俞树荣, 何燕妮, 李淑欣等. 晶粒尺寸对奥氏体不锈钢晶间腐蚀敏感性的影响[J]. 中国腐蚀与防护学报, 2013, 33(1): 70)
[14] Jin W S, Lang Y P, Rong F, et al.Researeh of EPR on the susceptibility to intergranular attach of aus tenitic stainless steel[J]. J. Chin. Soc. Corros. Prot., 2007, 27(1): 54
[14] (金维松, 郎宇平, 荣凡等. EPR法评价奥氏体不锈钢晶间腐蚀敏感性的研究[J]. 中国腐蚀与防护学报, 2007, 27(1): 54)
[15] Apachitei I, Fratila L E, Duszczyk J.Microgalvanic activity of an Mg-Al-Ca-based alloy studied by scanning Kelvin probe force microscopy[J]. Scr. Mater., 2007, 57: 1012
[16] Li W, Li D Y.Influence of surface morphology on corrosion and electronic behavior[J]. Acta Mater., 2006, 54: 445
[17] Wang J, Wang S Q.Correlation between galvanic corrosion and electronic work function of Al alloy surfaces[J]. Acta Phys.-Chim. Sin., 2014, 30(3): 551
[17] (王健, 王绍青. 铝合金表面电偶腐蚀与电子功函数的关系[J]. 物理化学学报, 2014, 30(3): 551
[1] Hui LIU,Wei QIU,Bin LENG,Guojun YU. Corrosion Behavior of 304 and 316H Stainless Steels in Molten LiF-NaF-KF[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[2] Xiwu LIU,Xiaoyan ZHAO,Xin'an CUI,Lanfei XU,Xiaowei LI,Rongqi CHENG. Corrosion Behavior of 304L Stainless Steel in Nitric Acid-Sodium Nitrate Solutions[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[3] Xiaoyan ZHAO, Xiwu LIU, Xin'an CUI, Fengchang YU. Corrosion Behavior of 304L Steel in Nitric Acid Environment[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[4] Danyang LIU, Jiexia WANG, Jinfeng LI, Yonglai CHEN, Xuhu ZHANG, Xiuzhi XU, Ziqiao ZHENG. Intergranular Corrosion Behavior of T6 Aging Treated Micro-alloyed Al-Cu-Li Alloys with Mg/Ag/Zn[J]. 中国腐蚀与防护学报, 2018, 38(2): 183-190.
[5] Deqiang LIU,Liming KE,Weiping XU,Li XING,Yuqing MAO. Intergranular Corrosion Behavior of Friction-stir Welding Joint for 20 mm Thick Plate of 7075 Al-alloy[J]. 中国腐蚀与防护学报, 2017, 37(3): 293-299.
[6] XU Long, YAO Xi, LI Jingfeng, CAI Chao. Correlation Between Intergranular Corrosion Behavior and Aging Treatment of 2099 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2014, 34(5): 419-425.
[7] YUAN Juntao,WU Ximao,WANG Wen,ZHU Shenglong,WANG Fuhui. Effect of Grain Size on Oxidation of Heat-resistant Steels in High Temperature Water Steam[J]. 中国腐蚀与防护学报, 2013, 33(4): 257-264.
[8] YU Shurong,HE Yanni,LI Shuxin,WANG Lu. Effect of Grain Size on Susceptibility to Intergranular Corrosion for Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2013, 33(1): 70-74.
[9] FENG Wanli, ZHANG Lefu, MA Mingjuan. EFFECTS OF ROLLING ON THE SPECIAL GRAIN BOUNDARIES AND INTERGRANULAR CORROSION OF ALLOY 690[J]. 中国腐蚀与防护学报, 2012, 32(4): 296-299.
[10] SUN Tao, DENG Bo, XU Juliang, LI Jin, JIANG Yiming. INFLUENCE OF NIOBIUM AND NITROGEN ON THE RESISTANCE TO PITTING AND INTERGRANULAR CORROSION OF 304 AUSTENITIC STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2010, 30(6): 421-426.
[11] LI Chaoxing; LI Jinfeng; BIRBILIS Nick; JIA Zhiqiang; ZHENG Ziqiao. SYNERGETIC EFFECT OF Mg2Si AND Si PARTICLES ON INTERGRANULAR CORROSION OF Al-Mg-Si ALLOYS THROUGH MULTI-ELECTRODE COUPLING SYSTEM[J]. 中国腐蚀与防护学报, 2010, 30(2): 107-113.
[12] ;. Effect of grain size on the atmospheric corrosion resistance of carbon steel in industrial environment[J]. 中国腐蚀与防护学报, 2007, 27(4): 193-196 .
[13] . EIS CHARACTERISTICS OF 304 STAINLESS STEEL DURING INTERGRANULAR CORROSION[J]. 中国腐蚀与防护学报, 2007, 27(2): 74-79 .
[14] ;. INTERGRANULAR CORROSION OF 18-8 AUSTENITIC STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2007, 27(2): 124-128 .
[15] . CORROSION BEHAVIOR OF Fe-10Cr NANOCRYSTALLINE COATINGS ( I ) THE PASSIVE BEHAVIOR OF Fe-10CrNANOCRYSTALLINE COATINGS IN ACIDIC SOLUTION[J]. 中国腐蚀与防护学报, 2007, 27(1): 35-42 .
No Suggested Reading articles found!