Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (5): 386-392    DOI: 10.11902/1005.4537.2015.101
Current Issue | Archive | Adv Search |
Evolution of Corrosion Product Scales on an Acid Proof Pipeline Steel X65 MS in H2S Containing Environment
Yangyang DONG,Feng HUANG(),Pan CHENG,Qian HU,Jing LIU
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
Download:  HTML  PDF(3765KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of X65 MS pipeline steel in 5%NaCl solutions with different concentrations of H2S and pH values, and the morphology, composition and phase constituent of the corrosion product scales were investigated by means of mass-loss method, electrochemical impedance spectroscope, field emission scanning electron microscopy (FE-SEM) and X-ray diffractometer (XRD). The results showed that, in the solutions with the same pH value, the average corrosion rate of X65 MS pipeline steel increased with the increasing H2S concentration. When the ratio [H2S]/[H3O+]<101.5, the average corrosion rate of the steel decreased with the increasing pH, on the contrast, which was independent to both of pH value and H2S concentration if the ratio [H2S]/[H3O+]>101.5. Besides, the formed corrosion product scales on X65 MS pipeline steel were mainly composed of amorphous ferrous sulfide, iron sulfide and mackinawite, the amount of each phase varied with the pH value and H2S concentration of the solutions. It is noted that all the corrosion product scales exhibited relatively poor protectiveness.

Key words:  X65 MS pipeline steel      H2S      pH      corrosion product scale      iron sulfides     
ZTFLH:     
Fund:  

Cite this article: 

Yangyang DONG, Feng HUANG, Pan CHENG, Qian HU, Jing LIU. Evolution of Corrosion Product Scales on an Acid Proof Pipeline Steel X65 MS in H2S Containing Environment. Journal of Chinese Society for Corrosion and protection, 2015, 35(5): 386-392.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.101     OR     https://www.jcscp.org/EN/Y2015/V35/I5/386

Fig.1  Microscopic structure of the X65 MS pipeline steel
Fig.2  Schematic of the experiment device
Fig.3  Corrosion rates of X65 pipeline steel in 5%NaCl solutions as functions of concentration of H2S and pH value
Fig.4  SME images of corrosion product film in different corrosion conditions: (a1) pH=3.5, 0.2 mmol/L H2S; (a2) pH=3.5, 2 mmol/L H2S; (a3) pH=3.5, 20 mmol/L H2S; (b1) pH=4.5, 0.2 mmol/L H2S; (b2) pH=4.5, 2 mmol/L H2S; (b3) pH=4.5, 20 mmol/L H2S; (c1) pH=5.5, 0.2 mmol/L H2S; (c2) pH=5.5, 2 mmol/L H2S ;(c3) pH=5.5, 20 mmol/L H2S
Fig.5  XRD spectra of corrosion product films in different corrosion conditions:(a1) pH=3.5, 0.2 mmol/L H2S; (a2) pH=3.5, 2 mmol/L H2S; (a3) pH= 3.5, 20 mmol/L H2S; (b1) pH=4.5, 0.2 mmol/L H2S; (b2) pH=4.5, 2 mmol/L H2S; (b3) pH=4.5, 20 mmol/L H2S; (c1) pH=5.5, 0.2 mmol/L H2S; (c2) pH=5.5, 2 mmol/L H2S; (c3) pH=5.5, 20 mmol/L H2S
Fig.6  EIS of X65 pipeline steel after immersion for 24 h in 5%NaCl solutions with various concentrations of H2S anddifferent pH values of pH=3.5 (a, b), pH=4.5 (c, d) and pH=4.5 (e, f)
pH C(H2S) / mmolL-1 Rs / Ωcm2 Rct / Ωcm2 Rfilm / μFcm2 CPEfilm / μFcm2 CPEdl / μFcm-2 n1 n2
3.5 0 23.99 5228 1430 640.65 990.89 1.03 0.79
0.2 13.14 3009 1593 7445 15510 0.90 0.86
2 25.71 2912 1870 18250 429.3 0.74 0.94
20 32.82 1080 2024 9939.2 3045.5 0.73 0.89
4.5 0 18.86 6393 2510 68.25 934.66 0.86 0.87
0.2 19.96 5598 2496 578.03 1963.7 0.92 0.91
2 18.79 3035 2981 10418 6077 0.71 0.65
20 34.90 1285 49.90 225.67 7199.4 0.98 0.84
5.5 0 27.88 10230 4397 1480.8 1033.8 0.72 0.82
0.2 21.92 6926 2960 1234 9898.8 0.88 0.93
2 19.69 1772 262 12810 10637 0.80 0.81
20 22.64 1389 538 269 12554 0.70 0.94
Table 1  Fitting values of electrochemical parameters for X65 pipeline steel in the various corrosion conditions
Fig.7  Equivalent circuit
[1] Feng Y R, Huo C Y, Ma Q R, et al. Some aspects on west-east gas transmission pipeline steels and pipes [A]. Proc 4th Inter Pipeline Conf [C]. Calgary: American Society of Mechanical Engineers, 2002, 371
[2] Streisselberger A, Fluess P, Bauer J, et al. Modern line pipe steels designed for sophisticated subsea projects for sweet and sour gas [A]. Proc 9th Inter Off shore and Polar Engneering Conf [C]. Brest: ISOPE, 1999, 125
[3] Mendoza R, Alanis M, Perez R, et al. On the processing of Fe2C2Mn2Nb steels to produce plates for pipelines with sour gas resistance[J]. Mater. Sci. Eng., 2002, A337(1/2): 115
[4] Ma Y, Cheng L, Li Q, et al. The influence of hydrogen sulfide on corrosion of iron under different conditions[J]. Corros. Sci., 2000, 42: 1669
[5] Hernández-Espejel A, Domínguez-Crespo M A, Cabrera-Sierra R, et al. Investigations of corrosion films formed on API-X52 pipeline steel in acid sour media[J]. Corros. Sci., 2010, 52(2): 2258
[6] Shoesmith D W, Taylor P, Bally M G, et al. The formation of ferrous monosulfide polymorphs during the corrosion of iron by aqueous hydrogen sulfide at 21 ℃[J]. J. Electrochem. Soc., 1980, 127(5): 1007
[7] Yang G, Luo X, Gao L Q. Corrosion investigation and survey of the soil and water in the project of the transmission of natural gas from west to east[J]. Corros. Prot., 2003, 24(1): 29 (阳光, 罗心, 高立群. 西气东输沿线水土腐蚀勘测方法[J]. 腐蚀与防护, 2003, 24(1): 29)
[8] Cui L, Li L W, Zou H, et al. Analysis of structure and performance of X52MS pipeline steel resistant to H2S corrosion produced by WISCO[J]. J. Wuhan Univ. Sci. Technol., 2014, 37(3): 170 (崔雷, 李利巍, 邹航等. 武钢耐H2S腐蚀X52MS钢组织及性能分析[J]. 武汉科技大学学报, 2014, 37(3): 170)
[9] NACE standard TM0284 2003. Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen induced Cracking [R]. Houston: NACE International, 2003
[10] Zeng R C,Han E-H,et al. Corrosion and Protection of Materials[M]. Beijing: Chemical Industry Press, 2006 (曾荣昌,韩恩厚等. 材料的腐蚀与防护[M]. 北京: 化学工业出版社, 2006)
[11] Cheng X L, Ma H Y, Zhang J P, et al. Corrosion of iron in acid solutions with hydrogen sulfide[J]. Corrosion, 1998, 54: 369
[12] Zheng Y G, Brown B, Nesic S. Electrochemical model of mild steel corrosion in a mixed H2S/CO2 aqueous environment[J]. Corrosion, 2014, 70: 351
[13] Ma H, Cheng X L, Li G Q, et al. The influence of hydrogen sulfide on corrosion of iron under different conditions[J]. Corros. Sci., 2000, 42: 1669
[14] Videm K, Kvarekval J. Stress corrosion cracking of 2205 duplex stainless steel in H2S-CO2 environment[J]. Corrosion, 1995, 51: 260
[15] Sun W, Nesic S. A mechanistic model of uniform hydrogen sulfide/carbon dioxide corrosion of mild steel[J]. Corrosion, 2009, 65: 291
[16] Guo H, He X Y, Wu Y H. Effect of H2S on corrosion behavior of X70 steel in weak acid solutions[J]. Corros. Sci. Prot. Technol.,2006, 18(4): 258 (郭红, 何晓英, 伍远辉. H2S对X70钢在弱酸性溶液中的腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2006, 18(4): 258)
[17] Castaneda H, Sosa E, Espinosa-Medina M A. Film properties and stability influence on impedance distribution during the dissolution process of low-carbon steel exposed to modified alkaline sour environment[J]. Corros. Sci., 2009, 51: 799
[18] Vedage H, Ramanarayanan T A, Munford J D, et al. Electrochemical growth of iron sulfide films in H2S-saturated chloride media[J]. Corrosion, 1993, 49: 114
[19] Liao X N, Cao F H, Chen A N, et al. In-situ investigation of atmospheric corrosion behavior of bronze under thin electrolyte layers using electrochemical technique[J]. Trans. Nonferrous Met. Soc. China, 2012, 22(5): 1239
[1] LUAN Hao, MENG Fandi, LIU Li, CUI Yu, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Preparation and Anticorrosion Performance of M-phenylenediamine-graphene Oxide/Organic Coating[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[2] GE Pengli, ZENG Wenguang, XIAO Wenwen, GAO Duolong, ZHANG Jiangjiang, LI Fang. Effect of Applied Stress and Medium Flow on Corrosion Behavior of Carbon Steel in H2S/CO2 Coexisting Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[3] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[4] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[5] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[7] ZHAO Dongyang, ZHOU Yu, WANG Dongying, NA Duo. Effect of Phosphating on Hydrogen Embrittlement of SA-540 B23 Steel for Nuclear Reactor Coolant Pump Bolt[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[8] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[9] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[10] AI Fangfang, CHEN Yiqing, ZHONG Bin, LI Lin, GAO Peng, SHAN Hongyu, SU Xiandong. Stress Corrosion Cracking Behavior of T95 Oil Well Pipe Steel in Sour Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[11] LI Ziyun, WANG Gui, LUO Siwei, DENG Peichang, HU Jiezhen, DENG Junhao, XU Jingming. Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[12] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[13] DING Qingmiao, QIN Yongxiang, CUI Yanyu. Galvanic Corrosion of Aircraft Components in Atmospheric Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[14] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[15] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
No Suggested Reading articles found!