Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (5): 393-399    DOI: 10.11902/1005.4537.2014.196
Current Issue | Archive | Adv Search |
Corrosion Behavior of Pipeline Steel X65 in Oilfield
Shuan LIU1,2,Xia ZHAO1(),Changwei CHEN1,Baorong HOU1,Jianmin CHEN2
1. Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2. Key Laboratory of Marine Materials and Related Ningbo Technologies, Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Download:  HTML  PDF(3032KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The inner- and outer-surface corrosion behavior of X65 pipeline steel used in Shengli Chengdao oilfield was studied in this paper. The inner surface corrosion behavior of X65 pipeline steel in oil-water mixtures with different flow rate and oil content was examined by means of mass loss method and electrochemical technique. The corrosion resistance of the outer surface of X65 pipeline steel in soil extracts was also examined by means of polarization curves and electrochemical impedance spectroscopy (EIS). The phase constituents and surface morphology of corrosion products were characterized by using X-ray diffraction techniques (XRD) and scanning electron microscopy (SEM), respectively. The results indicated that the corrosion rate of X65 steel increased with the increasing flow rate of oil-water mixture, which could reach the maximum value when the oil content was 0.5% (mass fraction). The corrosion current density of X65 steel increased with immersion time in soil extracts. A loose corrosion product film formed on the steel surface, which can accelerate the cathodic depolarization reaction.

Key words:  X65 pipeline steel      corrosion behavior      soil extract      velocity      oil content     
ZTFLH:     
Fund:  

Cite this article: 

Shuan LIU, Xia ZHAO, Changwei CHEN, Baorong HOU, Jianmin CHEN. Corrosion Behavior of Pipeline Steel X65 in Oilfield. Journal of Chinese Society for Corrosion and protection, 2015, 35(5): 393-399.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.196     OR     https://www.jcscp.org/EN/Y2015/V35/I5/393

Fig.1  Schematic diagram of the corrosion test cell (1-Base tray, 2-X65 steel, 3-Electrode, 4- Probe, 5-Heater, 6-Air vent, 7-Holder, 8-Wire line, 9-Pulley, 10-Turbine reducer, 11- Power machine, 12-Pressure gauge, 13-Air inlet, 14-Thermocouple, 15-Autoclave, 16- Electrochemical monitor, 17-Computer)
Fig.2  Effects of oil content and velocity of oil emulsion on corrosion rate of X65 steel
Fig.3  Surface microscopic images of X65 steel after adsorption of 5% (a), 10% (b) and 50% (c) oil phase in mass fraction
Fig.4  Tafel polarization curves of X65 steel after immersion for 2 d in the solution containing 0% (a), 0.5% (b) and 1% (c) oil
Fig.5  Nyquist (a, c) and Bode (b, d) plots of X65 steel after immersion in soil extract for different time
Fig.6  Equivalent circuits of X65 steel immersed for different time in soil extract: (a) one time

constant, (b) two time constant

Time / d Rs / Ωcm2 Qf / μFcm-2 n1 Rf / Ωcm2 Qdl / μFcm-2 n2 Rct / Ωcm2
1 1.01 --- --- --- 501.2 0.84 1943.8
3 1.45 --- --- --- 421.5 0.87 1627.2
7 1.62 --- --- --- 351.2 0.84 1214.3
10 1.36 --- --- --- 346.2 0.86 1108.4
14 1.91 6.91 0.83 17.2 127.1 0.76 1026.1
21 1.49 3.22 0.96 35.2 114.1 0.97 923.2
24 1.56 5.65 0.84 64.5 105.5 0.84 856.3
28 1.05 2.88 0.96 85.8 258.3 0.93 693.6
Table 1  EIS fitting parameters of X65 steel after various immersion time in soil extract
Fig.7  Tafel polarization curves of X65 steel after immersion in soil extract for different time
Time d Ecorr V (vs SCE) Icorr μAcm-2 βc mVdec-1 βa mVdec-1
2 -0.725 8.65 -331.9 68.3
7 -0.732 11.50 -281.3 74.9
14 -0.796 39.30 -151.7 83.7
28 -0.813 76.30 -96.8 95.4
Table 2  Tafel fitted parameters of X65 steel after immersion in soil extract for different time
Fig.8  XRD patterns of X65 steel after immersion in soil extract for 7 d (a) and 28 d (b)
Fig.9  SEM images of X65 steel after immersion in soil extract for 0 d (a), 7 d (b), 14 d (c) and 28 d (d)
[1] Sun J F. Corrosion mechanism for water injection system of Chengdao offshore oilfield[J]. J. Chin. Univ. Pet.(Nat. Sci.), 2012, 36(3):180 (孙建芳. 胜利海上埕岛油田注水系统腐蚀机制[J]. 中国石油大学学报 (自然科学版), 2012, 36(3): 180)
[2] Luo Y B, Lv C Y. Offshore oil exploration and development status and prospect of Shandong Shengli oil field[J]. Coastal Eng., 2001, 20(3): 4 (罗玉斌, 吕春宇. 山东胜利油田海洋石油勘探开发现状及前景分析[J]. 海岸工程, 2001, 20(3): 4)
[3] Sun C, Sun J B, Wang Y, et al. Corrosion mechanism of OCTG carbon steel in supercritical CO2/oil/water system[J]. Acta Metall. Sin.
null 2014, 50(7): 811 (孙冲, 孙建波, 王勇等. 超临界CO2/油/水系统中油气管材钢的腐蚀机制[J]. 金属学报, 2014, 50(7): 811)
[4] Aprael S Y, Khalid R A, Anees A K. Effect of CO2 corrosion behavior of mild steel in oilfield produced water[J]. J. Loss Prevent. Proc. Ind., 2015, 38: 24
[5] Zhang G A, Cheng Y F. Electrochemical corrosion of X65 pipe steel in oil/water emulsion[J]. Corros.?Sci., 2009, 51: 901
[6] Zhang Y L. Corrosion Behavior of X65 Carbon Steel and 316L Stai-nless Steel in Oilfield Produced Water [D]. Qingdao: Ocean University of China, 2014 (张艳丽. X65碳钢和316L不锈钢在模拟油田采出水中的腐蚀行为研究 [D]. 青岛: 中国海洋大学, 2014)
[7] Shi L H, Wang C Q, Zou C J. Corrosion failure analysis of L485 natural gas pipeline in CO2 environment[J]. Eng. Fail. Anal., 2014, 36: 372
[8] Sim S, Cole I S, Bocher F, et al. Investigating the effect of salt and acid impurities in supercritical CO2 as relevant to the corrosion of carbon capture and storage pipelines[J]. Int. J. Greenh. Gas Con., 2013, 17: 534
[9] Liu S, Zhao X R, Sun H Y, et al. The degradation of tetracycline in a photoelectro-fenton system[J]. Chem. Eng. J., 2013, 231: 441
[10] Liu S, David M J, Huang Y P, et al. Degradation of organic pollutants by a Co3O4-graphite composite electrode in an electro-Fenton-like system[J]. Chin. Sci. Bull., 2013, 58: 2340
[11] Liu S, Sun H Y, Sun L J. Effects of the pH values and temperature on the electrochemical corrosion behavior of galvanized steel in simulated rusty layer solution[J]. J. Funct. Mater., 2013, 44(6): 858 (刘栓, 孙虎元, 孙立娟. pH值和温度对镀锌钢在模拟锈层溶液中电化学腐蚀行为的影响[J]. 功能材料, 2013, 44(6): 858)
[12] Liu S, Sun H Y, Sun L J, et al. Effects of pH and Cl- concentration on corrosion behavior of the galvanized steel in simulated rust layer solution[J]. Corros.?Sci., 2012, 65: 520
[13] Liu S, Sun H Y, Sun L J, et al. Effects of Zn(OH)2 on corrosion behavior of galvanized steel in seawater[J]. J. Mater. Eng., 2013, (8): 60 (刘栓, 孙虎元, 孙立娟等. 海水中Zn(OH)2对镀锌钢腐蚀行为的影响[J]. 材料工程, 2013, (8): 60)
[14] Sun H Y, Liu S, Sun L J. A comparative study on the corrosion of galvanized steel under simulated rust layer solution with and without 3.5wt%NaCl[J]. Int. J. Electrochem. Sci., 2013, 8: 3494
[15] Liu S, Sun H Y, Zhang N, et al. The corrosion performance of galvanized steel in closed rusty seawater[J]. Int. J. Corros., 2013, (2013): 1
[1] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[2] GE Fangyu, HUANG Feng, YUAN Wei, XIAO Hu, LIU Jing. Effect of Cyclic Stress Frequency on Corrosion Electrochem-ical Behavior of MS X65 Pipeline Steel in H2S Containing Medium[J]. 中国腐蚀与防护学报, 2021, 41(2): 187-194.
[3] GE Pengli, ZENG Wenguang, XIAO Wenwen, GAO Duolong, ZHANG Jiangjiang, LI Fang. Effect of Applied Stress and Medium Flow on Corrosion Behavior of Carbon Steel in H2S/CO2 Coexisting Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[4] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[5] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[6] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[7] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[8] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[9] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[10] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[11] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[12] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[13] WANG Qinying,PEI Rui,XI Yuchen. Erosion-corrosion Behavior of Laser-clad Ni-based Alloy Coating on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[14] GUO Tieming,ZHANG Yanwen,QIN Junshan,SONG Zhitao,DONG Jianjun. Corrosion Behavior of Q345q Bridge Steel in Three Simulated Atmospheres[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[15] Bobo HUANG,Ping LIU,Xinkuan LIU,Pinxiu MEI,Xiaohong CHEN. Seawater Corrosion Behavior of New 70-1 Tin Brass Net in Waters off Dachen Island for Two Years[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
No Suggested Reading articles found!