Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (2): 137-143    DOI: 10.11902/1005.4537.2014.031
Current Issue | Archive | Adv Search |
Effect of Potential on Electrochemical Corrosion Behavior of 316L Stainless Steel in Borate Buffer Solution
CHEN Yu, CHEN Xu(), LIU Tong, WANG Guanfu, WANG Yanliang
College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
Download:  HTML  PDF(1640KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The electrochemical corrosion behavior of passive film of 316L stainless steel in borate buffer solution was investigated by dynamic polarization and electrochemical impedance spectroscopy (EIS) technology. The semiconducting character of the passive film was studied by Mott-Schottky curve. The results showed that a much compact and stable passive film could form on 316L stainless steel surface by potentials in a range from -0.1 to 0.5 V; the applied potential had little effect on the semiconducting character of the formed passive film. The passive films formed by potentials in the above range exhibited character of p-type semiconductor and among them the one formed by 0.3 V had the lowest acceptor density NA.

Key words:  316L stainless steel      film forming potential      dynamic polarization      EIS      Mott-Schottky     
Received:  22 April 2014     
ZTFLH:  TG174  

Cite this article: 

CHEN Yu, CHEN Xu, LIU Tong, WANG Guanfu, WANG Yanliang. Effect of Potential on Electrochemical Corrosion Behavior of 316L Stainless Steel in Borate Buffer Solution. Journal of Chinese Society for Corrosion and protection, 2015, 35(2): 137-143.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.031     OR     https://www.jcscp.org/EN/Y2015/V35/I2/137

Fig.1  Microstructures of 316L stainless steel (a) and the magnified image (b)
Fig.2  Potentiodynamic polarization curve of 316L stainless steel in borate buffer solution
Fig.3  Polarization curves of 316L stainless steel in borate buffer solution at different passive film forming potentials
Fig.4  Nyquist plots of 316L stainless steel in borate buffer solution
Fig.5  Bode plots of 316L stainless steel in borate buffer solution
Fig.6  Equivalent circuit of Nyquist plot
Potential / V Rs / Ωcm2 Q1 / Fcm2 n Rp / Ωcm2p L / H Q2 / Fcm2 n Rt / Ωcm2
-0.1 9.323×104 7.895×10-10 --- 3294 5.921×10-3 7.413×10-5 0.813 4.192×104
0.1 6190 4.609×10-8 --- 2005 5.111×10-3 8.582×10-5 0.801 5.371×104
0.3 8510 7.794×10-10 0.7 3664 1.129×10-2 8.983×10-5 0.748 8.669×104
0.5 1019 1.071×10-9 --- 2655 5.309×10-3 10.220×10-5 0.795 2.992×104
Table 1  Fitting results of Nyquist plots
Fig.7  Mott-Schottky plots of passive films of 316L stainless steel at the passive film forming potential of -0.1 V (a), 0.1 V (b), 0.3 V (c) and 0.5 V (d)
Fig.8  Relationships between ND, Efb and forming potential
Fig.9  Thickness of space-charge layer as the function of forming potential
[1] Zhang H, Li C T, Song L J, et al. Effects of pH on electrochemical properties of 316L stainless steel[J]. Corros. Prot., 2013, 34(7): 593
(张晖, 李成涛, 宋利君等. pH对316L不锈钢电化学性能的影响[J]. 腐蚀与防护,2013, 34(7): 593)
[2] Yang W. Development of nuclear power industry and its demands on corrosion protection technology[J]. Corros. Prot., 1997, 18(3): 99
(杨武. 核电工业的发展及其对腐蚀防护技术的需求[J]. 腐蚀与防护, 1997, 18(3): 99)
[3] Han E-H. Research trends on micro and nano-scale materials degradation in nuclear power plant[J]. Acta Metall. Sin., 2011, 47(7): 769
(韩恩厚. 核电站关键材料在微纳米尺度上的环境损伤行为研究[J]. 金属学报, 2011, 47(7): 769)
[4] Dacunhabelo M, Walls M, Hakiki N E, et al. Composition, structure and properties of the oxide films formed on the stainless steel 316L in a primary type PWR enviroment[J]. Corros. Sci., 1998, 40(2):447
[5] Uemura M, Yamamoto T, Fushimi K. Depth profile analysis of thin passive films on stainless steel by glow dischare optical emission spectroscopy[J]. Corros. Sci., 2009, 51(6): 1554
[6] Li W S, Chen H Y, Yuan Z Z, et al. Electrochemical investigations on pitting susceptibility of iron-based Al[J]. Elctrochemistry, 2004, 10(4): 397
(李伟善, 陈红雨, 袁中直等. Fe基合金钝化膜点蚀敏感性的电化学研究[J]. 电化学, 2004, 10(4): 397)
[7] Cheng X Q, Li X G, Du C W, et al. Self-passivating behavior of 316L stainless steel in high-temperature acetic acid solution[J]. J. Univ. Sci. Technol. Beijing, 2006, 28(9): 840
(程学群, 李晓刚, 杜翠薇等. 316L不锈钢在含氯高温醋酸溶液中的自钝化行为[J]. 北京科技大学学报, 2006, 28(9): 840)
[8] Li C T, Li X G, Cheng X Q, et al. Electrochemical properties of 316L stainless steel and 690 alloy in NaOH solution[J]. Corros. Prot., 2011, 32(5): 252
(李成涛, 李晓刚, 程学群等. 316L不锈钢、690合金在氢氧化钠溶液中的电化学性能[J]. 腐蚀与防护, 2011, 32(5): 252)
[9] Yu J G, Luo J L, Zhang C S, et al. Photoelectrochemical study of hydrogen-loaded passive film[J]. J. Electrochem. Soc., 2003, 150: B405
[10] Meng G Z, Sun F L, Shao Y W, et al. Influence of nano-scale twins structure on passive film formed on-nickel[J]. Electrochim. Acta,2010, 55(4): 2575
[11] Goodlet G, Faty S, Cardose S, et al. The electronic properties of spluttered chromium and iron oxide films[J]. Corros. Sci., 2004, 46(6): 1479
[12] Cheng X Q, Li X G, Du C W, et al. Electrochemical properties of passivation film formed on 316L stainless steel in acetic acid[J]. J. Univ. Sci. Technol. Beijing, 2007, 29(9): 911
(程学群, 李晓刚, 杜翠薇等. 316L不锈钢在醋酸溶液中的钝化膜电化学性质[J]. 北京科技大学学报, 2007, 29(9): 911)
[13] Xu C C, Xu R F, Ouyang W Z, et al. EIS study of the effect of deformation induced α' martensite on pitting sensibility of 1Cr18Ni9Ti stainless steel in acidic NaCl solution[J]. Corros. Sci. Prot. Technol., 1997, 19(2): 95
(许淳淳, 徐瑞芬, 欧阳维真等. 用交流阻抗法研究形变诱发马氏体相变的1Cr18Ni9Ti不锈钢在酸性NaCl溶液中的孔蚀敏感性[J]. 腐蚀科学与防护技术, 1997, 19(2): 95)
[14] Hamadou L, Kadri A, Benbrahim N. Characterisation of passive films formed on low carbon steel in borate buffer solution (pH 9.2) by electrochemical impedance spectroscopy[J]. Appl. Surf. Sci., 2005, 252(5): 1510
[15] Sikora J, Sikora E, Macdonald D D. The eleetronic structure of the passive film on tungsten[J]. Electrochim. Acta, 2000, 45(14): 1875
[16] Paola A D. Semiconductring properties of passive films on stainless steels[J]. Electrochim. Acta, 2002, 34(2): 203
[17] Jia Z J, Li X G, Liang P, et al. Electrochemical characterization of passive film formed under different potential condition on X70 pipeline steel in NaHCO3 solution[J]. J. Chin. Soc. Corros. Prot., 2010,30(3): 241
(贾志军, 李晓刚, 梁平等. 成膜电位对X70管线钢在NaHCO3溶液中钝化膜电化学性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(3): 241)
[18] Morrison S R. Electrochemistry at Semicnductor and Oxidized Metal Electrodes [M]. New York: Plenum Press, 1980
[19] Feng Z C, Cheng X, Dong C, et al. Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy[J]. Corros. Sci., 2010, 52(11): 3646
[20] Zhao J M, Gu F, Zhao X H, et al. Semiconductor properties of anodic oxide film formed on Aluminum.[J]. Acta Phys.-Chim. Sin., 2008, 24(1): 147
(赵景茂, 谷丰, 赵旭辉等. 铝阳极氧化膜的半导体特性[J]. 物理化学学报, 2008, 24(1): 147)
[1] LIU Xinyi, ZHAO Yazhou, ZHANG Huan, CHEN Li. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[2] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[3] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[4] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[5] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[6] Ming LIU,Xuequn CHENG,Xiaogang LI,Tianjian LU. Corrosion Resistance Mechanisms of Passive Films Formed on Low Alloy Rebar Steels in Liquor of Cement Extract[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[7] Zhiying ZHANG, Jianan TANG, Jie YU, Xudong WANG, Luochao HUANG, Junwen ZHOU, Hao TANG, Jikang ZHANG, Yatao CHEN, Dongpeng CHENG. Corrosion Behavior of Cu-based Metallic Glass Composites in NaCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(5): 478-486.
[8] Mingyuan JIAO, Weiliang JIN, Jianghong MAO, Teng LI, Jin XIA. Effect of Concrete Inner Environment on Hydrogen Evolution of Rebar During ElectrochemicalRemediation[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[9] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[10] Xiaofei CUI, Xiaoming TAN, De WANG, Ang QIAN. Assessment of Aging Performance of Polyurethane Coating for 7B04 Al-alloy with an Accelerated Testing Spectrum[J]. 中国腐蚀与防护学报, 2018, 38(1): 74-80.
[11] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[12] Jia WANG, Mengyang JIA, Zhaohui YANG, Bing HAN. On Completeness of EIS Equivalent Circuit Analysis for Electrochemical Corrosion Process[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[13] Guangyi CAI,Haowei WANG,Weihang ZHAO,Zehua DONG. Effect of Nano-CeO2 on Anticorrosion Performance for Polyurethane Coating[J]. 中国腐蚀与防护学报, 2017, 37(5): 411-420.
[14] Juan ZHANG,Ziqiang LIU,Tao FENG,Shifeng WEN,Ruiqing CHEN. Effect of Carbon Nanotube on Properties of Epoxy Coating[J]. 中国腐蚀与防护学报, 2017, 37(3): 254-260.
[15] Fengxuan SONG,Qizhong ZHAO,Feilong LI,Yuelu REN,Kui HUANG,Xinming ZHANG. Effect of Aging Treatment on Corrosion Rate of 7050 Al-alloy Plate[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.
No Suggested Reading articles found!