Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (2): 129-136    DOI: 10.11902/1005.4537.2014.058
Current Issue | Archive | Adv Search |
Effect of Martensite/Austenite (M/A) Constituent on H2S Resistance of High Strength Pipeline Steels
SHI Xianbo1,2, WANG Wei1, YAN Wei1, SHAN Yiyin1, YANG Ke1()
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Download:  HTML  PDF(5811KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Resistance to hydrogen sulfide (H2S) corrosion was studied for two X90 grade high strength pipeline steels with the same microstructure of acicular ferrite (AF). The results showed that the AF microstructure with fine martensite/austenite (M/A) constituent had better resistances to both hydrogen-induced cracking (HIC) and sulfide stress corrosion cracking (SSC). The larger size M/A constituent in AF microstructure deteriorated the H2S-resistance of the steels such as that with the decreasing pH value and increasing immersion time, the density of hydrogen-induced blisters on the steel surface increased and the HIC parameters increased, while its time-to-failure of SSC was shorter compared to the steel with finer M/A constituent. The different susceptibilities to H2S cracking of the two high strength pipeline steels were interpreted from the view points of size and quantity of M/A constituent, which was observed from the HIC propagation path by SEM. It is suggested that X90 pipeline steels for sour gas/oil service should have a lower amount of M/A constituent (<8%) and an effective M/A constituent size control (<2 μm) by TMCP as well as a proper chemical composition optimization, thereby to ensure their resistance to H2S.

Key words:  high strength pipeline steel      acicular ferrite      martensite/austenite constituent      hydrogen-induced cracking      sulfide stress corrosion cracking     
Received:  24 April 2014     
ZTFLH:  TG142.1  

Cite this article: 

SHI Xianbo, WANG Wei, YAN Wei, SHAN Yiyin, YANG Ke. Effect of Martensite/Austenite (M/A) Constituent on H2S Resistance of High Strength Pipeline Steels. Journal of Chinese Society for Corrosion and protection, 2015, 35(2): 129-136.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.058     OR     https://www.jcscp.org/EN/Y2015/V35/I2/129

Steel C Si Mn S P Mo Cu Cr Ni Al Nb+V+Ti Fe
A 0.046 0.14 1.53 0.0014 0.0050 0.20 0.31 0.30 0.10 0.061 0.132 Bal.
B 0.046 0.10 1.68 0.0013 0.0050 0.19 0.30 0.29 0.20 0.031 0.117 Bal.
Table 1  Chemical compositions of the experimental steels
Steel Rolling temperature / ℃ Accelerated cooling
Cooling rate ℃/s Final cooling temperature / ℃
A 1100 1056 1000 892 854 800 772 15 300
B 1079 1046 987 890 835 800 750 20 ---
Interpass reduction distribution / mm 80~60 60~45 45~30 30~24 24~16 16~11 11~8 --- ---
Table 2  Measured processing parameters in TMCP of the experimental steels
Fig.1  Schematic diagram of specimen for HIC test and the faces to be examined (unit: mm)
Fig.2  Schematic diagram of specimen for SSC test at constant load (unit: mm)
Fig.3  OM (a, c) and SEM (b, d) images of A steel (a, b) and B steel (c, d)
Steel ?Yield strength(YS / MPa) Ultimate tensile
strength (UTS / MPa)
YS/UTS
ratio
Elongation
%
Uniform
elongation / %
Impact
tough / J
A 620 720 0.86 23.5 8.6 116
B 657 729 0.90 23.5 9.4 116
Table 3  Mechanical properties of the experimental steels
Fig.4  Surface photographs of two experimental steels immersed in NACE TM0284 solution: (a) Steel A, pH=2.7 (oh), 3.2 (96 h); (b) Steel B, pH=2.7 (oh), 3.2 (96 h); (c) Steel A, pH=1.9 (oh), 3.0 (288 h); (d) Steel B, pH=1.9 (oh), 3.0 (288 h)
Fig.5  Morphology of hydrogen induced blistering cracking and hydrogen induced cracking in Steel B
Steel Sample The initial pH=2.7 and the ending pH=3.2, 96 hours Steel Sample The initial pH=1.9 and the ending
pH=3.0, 288 hours
CSR / % CLR / % CTR / % CSR / % CLR / % CTR / %
A 1 0 0 0 A 7 0.03 11.4 0.3
2 0 0 0 8 0 0 0
3 0 0 0 9 0 0 0
Average 0 0 0 Average 0.01 3.8 0.1
B 4 0.3 60.9 1.9 B 10 1.2 67.0 3.1
5 0.1 35.8 0.7 11 1.1 39.1 3.4
6 0.2 22.3 0.7 12 0.1 13.1 0.9
Average 0.2 39.7 1.1 Average 0.8 39.7 2.5
Table 4  Results of cracking parameters on two experimental steels
Fig.6  Hydrogen induced crack propagation paths in Steel A corroded for 288 h (a) and Steel B corroded for 96 h (b) and 288 h (c)
Fig.7  Optical microstructures of Steel A (a) and Steel B (b) etched by Lapara reagent
Fig.8  Distributions of average size of M/A islands in Steel A (a) and Steel B (b)
Steel Microstructure Yield strength / MPa Loading strength Time / h
A AF+M/A 620 80%, 496 MPa >720
90%, 558 MPa >720
B AF+M/A 657 80%, 526 MPa 479
90%, 591 MPa 203
Table 5  Results of SSC experiments for two tested steels
Fig.9  Fractographs of SSC fracture at 90%σs loading for Steel B: (a) macrograph of the fracture surface, (b) a higher magnification of area I in Fig.9a, (c) a higher magnification of area II in Fig.9b
[1] Huang F, Liu J, Deng Z J, et al. Effect of microstructure and inclusions on hydrogen induced cracking susceptibility and hydrogen trapping efficiency of X120 pipeline steel[J]. Mater. Sci. Eng., 2010, A527: 6997
[2] Mendibide C, Sourmail T. Composition optimization of high-strength steels for sulfide stress cracking resistance improvement[J]. Corros. Sci., 2009, 51: 2795
[3] Zhao M C, Shan Y Y, Li Y H, et al. The effect of microstructure on the sulfide stress corrosion cracking in the pipe steel[J]. Acta Metall.Sin., 2001, 37(10): 1087
(赵明纯, 单以银, 李玉海等. 显微组织对管线钢硫化物应力腐蚀开裂的影响[J]. 金属学报, 2001, 37(10): 1087)
[4] Zhao M C, Shan Y Y, Xiao F R, et al. Investigation on the H2S-resistant behaviors of acicular ferrite and ultrafine ferrite[J]. Mater. Lett., 2002, 57: 141
[5] Koh S U, Jung H G, Kang K B, et al. Effect of microstructure on hydrogen-induced cracking of linepipe steels[J]. Corrosion, 2008, 64(7): 574
[6] Park G T, Koh S U, Jung H G, et al. Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of line pipes steel[J]. Corros. Sci., 2008, 50: 1856
[7] Beidokhti B, Dolati A, Koukabi A H. Effect of alloying elements and microstructure on the susceptibility of the welded HSLA steel to hydrogen-induced cracking and sulfide stress cracking[J]. Mater. Sci. Eng., 2009, A507: 167
[8] Nayaka S S, Misra R D K, Hartmann J, et al. Microstructure and properties of low manganese and niobium containing HIC pipeline steel[J]. Mater. Sci. Eng., 2008, A494: 456
[9] Shen Z, Li Y H, Shan Y Y, et al. Influence of sulfur content and microstructure of pipeline steels on mechanical property and H2S-resistant behavior[J]. Acta Metall. Sin., 2008, 44(2): 215
(沈卓, 李玉海, 单以银等. 硫含量及显微组织对管线钢力学性能和抗H2S行为的影响[J]. 金属学报, 2008, 44(2): 215)
[10] Wang S C, Yang J R. Effects of chemical composition, rolling and cooling conditions on the amount of martensite/austenite (M/A) constituent formation in low carbon bainitic steels[J]. Mater. Sci. Eng., 1992, A154: 43
[11] Wang C M, Wu X F, Liu J, et al. Study on M/A islands in pipeline steel X70[J]. J. Univ. Sci. Technol. Beijing, 2005, 12(1): 43
[12] Tong K, Zhuang C J, Liu Q, et al. The microstructure of martensite/austenite (M/A) constituent in the pipeline steels and its effects on the mechanical properties[J]. Mater. Mech. Eng., 2011, 35(2): 4
(仝珂, 庄传晶, 刘强等. 高钢级管线钢中M/A岛的微观特征及其对力学性能的影响[J]. 机械工程材料, 2011, 35(2): 4)
[13] Chu W Y. Hydrogen Damaged and Delayed Fracture[M]. Beijing: Metallurgy Industry Press, 1988
(褚武扬. 氢损伤和滞后断裂[M]. 北京: 冶金工业出版社, 1988)
[14] Kim W K, Koh S U, Yang B Y, et al. Effect of environmental and metallurgical factors on hydrogen induced cracking of HSLA steels[J]. Corros. Sci., 2008, 50: 3336
[15] Hara T, Asahi H, Ogawa H. Conditions of hydrogen-induced corrosion occurrence of X65 grade line pipe steels in sour environments[J]. Corrosion, 2004, 60(12): 1113
[16] Ale R M, Rebello J M A, Charlier J. A metallographic technique for detecting martensite-austenite constituents in the weld heat-affected zone of a micro-alloyed steel[J]. Mater. Charact., 1996, 37:89
[17] Chen J H, Kikuta Y, Araki T, et al. Micro-fracture behaviour induced by M-A constituent (Island Martensite) in simulated welding heat affected zone of HT80 high strength low alloyed steel[J]. Acta Metall., 1984, 32(10): 1779
[18] Oriani R A. Hydrogen embrittlement of steels[J]. Ann. Rev. Mater.Sci., 1978, 8: 327
[19] Zhao M C, Yang K. Strengthening and improvement of sulfide stress cracking resistance in acicular ferrite pipeline steels by nano-sized carbonitrides[J]. Scr. Mater., 2005, 52: 881
[1] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[2] CUI Shihua, LI Chunfu, WANG Pengfei, DENG Hongda. STRESS CORROSION CRACKING OF P110 IN ENVIRONMENT OF HIGH CONTENTS OF H2S AND CO2[J]. 中国腐蚀与防护学报, 2010, 30(3): 213-216.
[3] . Investigation of sulfide stress corrosion cracking for X70 pipeline steel[J]. 中国腐蚀与防护学报, 2008, 28(2): 86-89 .
[4] . Relations between Hydrogen-induced Cracking and Anode Dissolution of Pipeline Steel X70 in Near-neutral Environment[J]. 中国腐蚀与防护学报, 2008, 28(2): 76-80 .
[5] . Comparison on the Failure Behaviour of the LPG Spherical Tank Manufactured from Different Steels under the Wet H2S Environment[J]. 中国腐蚀与防护学报, 2006, 26(4): 245-250 .
[6] . Mechanisms for corrosion fatigue crack propagation[J]. 中国腐蚀与防护学报, 2004, 24(6): 321-333 .
No Suggested Reading articles found!