Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (1): 75-80    DOI: 10.11902/1005.4537.2013.230
Current Issue | Archive | Adv Search |
Corrosion Behavior of Three Titanium Alloys in 3.5%NaCl Solution
WANG Haijie1, WANG Jia1,3(), PENG Xin2, SHAN Chuan1
1. College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
2. Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan 316000, China
3. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(2849KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Corrosion behavior of three titanium alloys (TC4, TC18, TC21) in 3.5%NaCl solution was studied by means of cyclic voltammetry, SCC test with WOL pre-cracked sample and scanning electron microscope. Results showed that the pitting corrosion potential Eb of the three titanium alloys were 1.625, 1.671 and 1.871 V for TC4, TC18 and TC21, respectively. All values of Eb were high, representing the excellent pitting corrosion resistance of them. The pitting corrosion susceptibility of them could be ranked as the following descending sequence: TC4>TC18>TC21. The KISCC for TC4, TC18 and TC21 were 62.92, 66.82 and 71.99 MPam0.5 respectively and the SCC susceptibility of the three titanium alloys followed a sequence as: TC4>TC18>TC21. On the fractured surface of the alloys after SCC test, a macro-morphology with three zones representing pre-crack, stress corrosion induced crack and mechanical fracture respectively were clearly differentiated, while the stress corrosion cracking zone showed mainly ductile fracture.

Key words:  titanium alloy      stress corrosion      pitting corrosion      stress field intensity factor      cyclic voltammetry     
ZTFLH:  O646  

Cite this article: 

WANG Haijie, WANG Jia, PENG Xin, SHAN Chuan. Corrosion Behavior of Three Titanium Alloys in 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2015, 35(1): 75-80.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.230     OR     https://www.jcscp.org/EN/Y2015/V35/I1/75

Sample Al V Fe Mo Cr Zr Nb Sn Ti
TC4 5.5~6.8 3.5~4.5 0.3 --- --- --- --- --- Bal.
TC18 4.4~5.7 4.0~5.5 0.5~1.5 4.0~5.5 0.5~1.5 ≤0.30 --- --- Bal.
TC21 5.2~6.8 --- 0.9~2.0 2.2~3.3 0.9~2.0 1.6~2.5 1.7~2.3 1.6~2.5 Bal.
Table 1  Chemical compositions of TC4, TC18 and TC21 alloys
Fig.1  Sample of titanium alloy in SCC experiment
Fig.2  Cyclic voltammetry curves of three tested titanium alloys in 3.5%NaCl solution
Sample Eb / V Ep / V Eb-Ep / V
TC4 1.625 1.474 0.157
TC18 1.671 1.442 0.229
TC21 1.842 1.694 0.148
Table 2  Electrochemical parameters of three titanium alloys in 3.5%NaCl solution
Fig.3  Evalutions of potential of active (A) and passitive (P) zones of three titanium alloys
Fig.4  Crack length (a) and crack growth rate (b) of three titanium alloys as a function of time
Fig.5  Stress field intensity factor vs crack length for three titanium alloys
Fig.6  Curves of the –lg(da/dt) value of crack growth rates with KI of all three titanium alloys
Fig.7  Microphotographs of crack zone of TC4 (a),TC18 (b) and TC21 (c) alloys
Fig.8  SEM images of precrack zone (a~c), stress corrosion zone (d~f) and mechanical crack zone (g~i) of TC4 (a, d, g), TC18 (b, e, h) and TC21 (c, f, i) alloys
[1] Yang D, Guo J M. Corrosion mechanism of titanium alloys and development of corrosion-resistance titanium alloys[J]. Titanium Ind. Prog., 2011, 28(2): 4
(杨东, 郭金明. 钛合金的腐蚀机理及耐蚀钛合金的发展现状[J]. 钛工业进展, 2011, 28(2): 4)
[2] Tian F, Yang X H. Application of titanium alloys in ship building[J]. Chin. J. Ship Res., 2009, 4(03): 77
(田非, 杨雄辉. 舰艇用钛合金技术应用分析[J]. 中国舰船研究, 2009, 4(3): 77)
[3] Li L, Sun J K, Meng X J, et al. Application state and prospects for titanium alloys[J]. Titanium Ind. Prog., 2004, 21(5): 19
(李梁, 孙健科, 孟祥军等. 钛合金的应用现状及发展前景[J]. 钛工业进展, 2004, 21(5): 19)
[4] Jiang C Y, Xu J J, Yan K, et al. Titanium application for navy in Russia and our suggestions[J]. Titanium Ind. Prog., 2003, 20(6): 32
(蒋成禹, 徐济进, 严铿等. 俄罗斯海军用钛情况及我们的思考[J]. 钛工业进展, 2003, 20(6): 32)
[5] Huang H. Titanium is preferred material for heat exchangers in desalination equipment[J]. Rare Met. Lett., 1999, (9): 5
(黄虹. 钛是海水淡化设备换热器的首选材料[J]. 稀有金属快报, 1999, (9): 5)
[6] Meng X J, Wang D. Development of titanium alloys for shipbuilding[J]. Titanium Ind. Prog., 2000, 17(5): 7
(孟祥军, 汪汀. 船用钛合金发展概况[J]. 钛工业进展, 2000, 17(5): 7)
[7] Leyens C,Peters M,translated by Chen Z H. Titanium and Titanium Alloys[M]. Beijing: Chemical Industry Press, 2005: 11
(Leyens C,Peters M著,陈振华译. 钛与钛合金[M]. 北京: 化学工业出版社, 2005: 11)
[8] Liu G L. Study of stress corrosion mechanism of Ti alloys by recursion method[J]. Acta Metall. Sin., 2007, 43(3): 249
(刘贵立. 递归法研究钛合金应力腐蚀机理[J]. 金属学报, 2007, 43(3): 249)
[9] Yin J Z, Wu Y S, Lu J, et al. Study on electrochemical behavior and SCC susceptibility of TC4 in methanol solution[J]. Rare Met. Mater. Eng., 2004, 32(6): 436
(殷京瓯, 吴荫顺, 卢剑等. TC4钛合金在甲醇溶液中的应力腐蚀敏感性研究[J]. 稀有金属材料与工程, 2004, 32(6): 436)
[10] Lin C, Liu F, Zhao Q, et al. Corrosion behavior of TC4 titanium alloy in HF-HNO3 system[J]. Fail. Anal. Prevent., 2008, 3(2): 11
(林翠, 刘枫, 赵晴等. 氢氟酸-硝酸体系中TC4钛合金的腐蚀行为[J]. 失效分析与预防, 2008, 3(2): 11)
[11] Li S Q, Lei J F, Liu Y Y, et al. Hot-salt stress corrosion of titanium alloys of Ti811 and TC4[J]. Corros. Sci. Prot. Technol., 2010, 22(2): 79
(李少强, 雷家峰, 刘羽寅等. Ti8n和TC4合金的热盐应力腐蚀行为研究[J]. 腐蚀科学与防护技术, 2010, 22(2): 79)
[12] Chen J, Yan F Y, Wang J Z. Corrosion wear properties of TC4 titanium alloy in artificial seawater[J]. Tribology, 2012, 32(1): 1
(陈君, 阎逢元, 王建章. 海水环境下TC4钛合金腐蚀磨损性能的研究[J]. 摩擦学学报, 2012, 32(1): 1)
[13] Xiao J M. Metal Corrosion under Stress[M]. Beijing: Chemical Industry Press, 1990
(肖纪美. 应力作用下的金属腐蚀[M]. 北京: 化学工业出版社, 1990)
[14] HB 5293-1984. Wedge pre-cracked specimens loaded WOL KISCC test methods [S]
(HB 5293-1984. 楔型加载的WOL预裂纹试样KISCC试验方法 [S])
[15] Yang D J,Shen Z S. Science of Metal Corrosion[M]. Beijing: Metallurgical Industry Press, 1990
(杨德钧,沈卓身. 金属腐蚀学[M]. 北京: 冶金工业出版社, 1999)
[16] Wang A A, Fan A M, Long J M, et al. A study on corrosion behavior of titanium alloys[J]. J. Kunming Inst. Technol., 1995, 20(2): 75
(王安安, 樊爱民, 龙晋民等. 钛合金腐蚀行为的研究[J]. 昆明工学院学报, 1995, 20(2): 75)
[17] Magnin T, Chieragatti R, Oltra R. Mechanism of brittle fracture in a ductile 316 alloy during stress corrosion[J]. Acta Metall. Mater., 1990, 38(7): 1313
[18] Wu Y S, Jiang Y L, Chu H, et al. SCC susceptibility of the titanium alloy TA7 in alcohols solution[J]. J. Univ. Sci. Technol. Beijing, 2003, 25(1): 40
(吴荫顺, 姜应律, 褚洪等. 钛合金TA7在醇溶液中的应力腐蚀敏感性[J]. 北京科技大学学报, 2003, 25(1): 40)
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[4] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[5] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[6] AI Fangfang, CHEN Yiqing, ZHONG Bin, LI Lin, GAO Peng, SHAN Hongyu, SU Xiandong. Stress Corrosion Cracking Behavior of T95 Oil Well Pipe Steel in Sour Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[7] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[8] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[9] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[10] LI Qing, ZHANG Deping, LI Xiaorong, WANG Wei, SUN Baozhuang, AI Chi. Comparison of Stress Corrosion Behavior of TP110TS and P110 Steel in a Simulated Annular Environment of CO2 Injection Well[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[11] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[12] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[13] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[14] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[15] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
No Suggested Reading articles found!