Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (2): 101-111    DOI: 10.11902/1005.4537.2013.069
Original Article Current Issue | Archive | Adv Search |
Inhibition Performance of a New 3,5-dibromosalicylaldehyde-2-thenoyl Hydrazine Schiff Base for Carbon Steel in Oilfield Water and Relevant Molecular Dynamics Simulation
LIU Jie1, 2, LIU Zheng1, LIU Jin1, XIE Siwei1
1. College of Chemical and Biological Engineering, Guilin University of Technology, Guilin 541004, China;
2. SINOPEC Maoming Company, Maoming 525011, China
Download:  HTML  PDF(5764KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A new 3,5-dibromosalicylaldehyde-2-thenoyl hydrazine Schiff base compounds (L2) was synthesized. Its inhibition performance and adsorption behavior for carbon steel in a simulated oilfield water were investigated by electrochemical methods, scanning electron microscopy and molecular dynamics simulation respectively. The results indicated that L2 exhibits excellent corrosion inhibition performance for carbon steel in the simulated oilfield water, and also that in simulated oilfield waters with various pH values at different temperatures. The molecular dynamics simulation results proved that L2 molecules may parallel be adsorbed on the steel surface firmly via several reactive sites and packed together to form a dense monolayer to prevent the metal surface from water and corrosive medium in the liquid. In addition, L2 molecule monolayer can suppress the inwards migration of corrosive species. That is why L2 exhibits excellent corrosion inhibition performance.
Key words:  Schiff bases      corrosion inhibitor      carbon steel      simulated oilfield water      molecular dynamics     
Received:  02 June 2013     
ZTFLH:  TG174.42  

Cite this article: 

LIU Jie, LIU Zheng, LIU Jin, XIE Siwei. Inhibition Performance of a New 3,5-dibromosalicylaldehyde-2-thenoyl Hydrazine Schiff Base for Carbon Steel in Oilfield Water and Relevant Molecular Dynamics Simulation. Journal of Chinese Society for Corrosion and protection, 2014, 34(2): 101-111.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.069     OR     https://www.jcscp.org/EN/Y2014/V34/I2/101

[1] Migahed M A, Nassar I F. Corrosion inhibition of tubing steel during acidization of oil and gas wells [J]. Electrochim. Acta, 2008, 53: 2877-2882
[2] Hu S Q, Hu J C, Fan C C. Corrosion inhibition of Q235 steel by a novel imidazoline compound under H2S and CO2 coexistence [J]. Acta Phy.-Chim. Sin., 2010, 26(8): 2163-2170
(胡松青, 胡建春, 范成成等. 新型咪唑啉化合物在H2S/CO2共存条件下对Q235钢的缓蚀性能 [J]. 物理化学学报, 2010, 26(8): 2163-2170)
[3] Chen S L, Liu Z, Liu J, et al. Corrosion inhibition behavior of self-assembled monolayer of 4-aminobenzoic acid Schiff bases for 20# carbon steel in CO2-saturated oilfield water [J]. J. Chem. Ind. Eng., 2012, 63(10): 3226-3235
(陈世亮, 刘峥, 刘洁等. 4-氨基苯甲酸席夫碱自组装缓蚀膜对20#钢在饱和CO2油田水中的缓蚀性能 [J]. 化工学报, 2012, 63(10): 3225-3235)
[4] Wu Y, Cheng C X, Shi S M, et al. Synthesis and structure properties of 3, 5-dibromosalicylaldehyde salicylhydrazone and its metal complexes [J]. J. Huazhong Normal Univ., 2006, 40(1): 55-57
(吴宇, 程翠霞, 施少敏等. 3, 5-二溴水杨醛水杨酰腙及金属M (M=Zn(II)、Cu(II)、Ni(II)) 配合物的合成与结构特征 [J]. 华中师范大学学报, 2006, 40(1): 55-57)
[5] Yang J G, Pan F Y, Li J M. Synthesis, characterization, crystal structure and antibacterial activities of copper (II) complex with 2'-(2-Thienylidene)-cydroxybenzoylhydrazide [J]. Chin. J. Inorg. Chem., 2005, 21(10): 1593-1596
(杨健国, 潘富友, 李钧敏. Cu(II)-2'-(2-噻吩亚甲基) 水杨酰腙Schiff 碱配合物的合成、表征、晶体结构及抑菌活性研究 [J]. 无机化学学报, 2005, 21(10): 1593-1596)
[6] Lei L, Xiong G X, Wang Y Z. Research progress of Schiff bases and their complexes [J]. New Chem. Mater., 2012, 40(2): 16-20
(雷亮, 熊国宣, 王银柱. 席夫碱及其金属配合物性能研究进展 [J]. 化工新型材料, 2012, 40(2): 16-20)
[7] Song S, Song M, Zhang H M, et al. Crystal structure and antibacterial activity of 2-amino-benzothiazole complexes [J]. Chem. Res., 2010, 21(6): 21-25
(宋霜, 宋敏, 张怀敏等. 2-氨基苯并噻唑配合物的晶体结构及抑菌活性 [J]. 化学研究, 2010, 21(6): 21-25)
[8] Hu Q S, Hu J C, Gao Y J. Corrosion inhibition and adsorption of lauryl-imidazolines for Q235 steel [J]. J. Chem. Ind. Eng., 2011, 62(1): 147-155
(胡松青, 胡建春, 高元军等. 月桂基咪唑啉对Q235钢的缓蚀吸附作用 [J]. 化工学报, 2011, 62(1): 147-155)
[9] Xu X L, Huang B H, Liu J. Corrosion inhibition of pyrrolidonium ionic liquids for mild steel in HCL solution [J]. J. Chin. Soc. Corros. Prot., 2011, 31(5): 336-340
(徐效陵, 黄宝华, 刘军. 盐酸溶液中吡咯烷酮离子液体对碳钢的缓蚀性能 [J]. 中国腐蚀与防护学报, 2011, 31(5): 336-340)
[10] Liao Q Q, Chen Y Q, Yan A J, et al. The corrosion inhibition of alkyl imidazoline on carbon steel in amidosulphuric acid solution[J]. J. Chin. Soc. Corros. Prot., 2011, 31(5): 356-361
(廖强强, 陈亚琼, 闫爱军等. 氨基磺酸溶液中烷基咪唑啉对碳钢的缓蚀作用 [J]. 中国腐蚀与防护学报, 2011, 31(5): 356-361)
[11] Feng L J, Yang H Y, Wang F H. Experimental and theoretical studies for corrosion inhibition of carbon steel by imidazoline derivative in 5% NaCl saturated Ca(OH)2 solution [J]. Electrochim. Acta, 2011, 58: 427-436
[12] Hu S Q, Guo A L, Geng Y F, et al. Synergistic effect of 2-oleyl-1-oleylamidoethyl imidazoline ammonium methylsulfate and halide ions on the inhibition of mild steel in HCl [J]. Mater. Chem. Phys., 2012, 134: 54-60
[13] Zhang J, Qiao G M, Hu S Q, et al. Theoretical evaluation of corrosion inhibition performance of imidazoline compounds with different hydrophilic groups [J]. Corros. Sci., 2011, 53: 147-152
[14] Khaled K F. Experimental and molecular dynamics study on the inhibition performance of some nitrogen containing compounds for iron corrosion [J]. Mater. Chem. Phys., 2010, 124: 760-767
[15] Liu B Y, Liu Z, Han G C, et al. Corrosion inhibition and adsorption behavior of 2-((dehydroabietylamine) methyl)-6-methoxyphenol on mild steel surface in seawater [J]. Thin Solid Films, 2011, 519: 7836-7844
[16] Tang Y M, Yang X Y, Yang W Z, et al. Experimental and molecular dynamics studies on corrosion inhibition of mild steel by 2-amino-5-phenyl-1,3,4-thiadiazole [J]. Corros. Sci., 2010, 52: 242-249
[17] Khaled K F. Adsorption and inhibitive properties of a new synthesized guanidine derivative on corrosion of copper in 0.5 M H2SO4 [J]. App. Surf. Sci., 2008, 255: 1811-1818
[18] Zeng J P, Zhang J Y, Gong X D. Molecular dynamics simulation of interaction between benzotriazoles and cuprous oxide crystal [J]. Comput. Theor. Chem., 2011, 963: 110-114
[19] Xia S W, Qiu M, Yu L M, et al. Molecular dynamics and density functional theory study on relationship between structure of imidazoline derivatives and inhibition performance [J]. Corros. Sci., 2008, 50: 2021-2029
[20] Khaled K F. Electrochemical behavior of nickel in nitric acid and its corrosion inhibition using some thiosemicarbazone derivatives [J]. Electrochim. Acta, 2010, 55: 5375-5383
[21] Shi W Y, Ding C, Yan J L, et al. Molecular dynamics simulation for interaction of PESA and acrylic copolymers with calcite crystal surfaces [J]. Desalination, 2012, 291: 8-14
[1] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[4] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[7] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] Ping XU,Shuo ZHANG,Shuai SI,Yajun ZHANG,Changzheng WANG. Corrosion Mechanism of Carbon Steel Induced by Protein and Polysaccharide-the Main Components of EPS[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[9] Xiankang ZHONG,Junying HU. Corrosion Behavior of X65 Carbon Steel in CO2Containing Liquids with Constant pH and Ferrous Ion Concentration[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[10] Yaqiong LI,Jingling MA,Guangxin WANG,Yujie ZHU,Yongfa SONG,Jingli ZHANG. Effect of Sodium Phosphate and Sodium Dodecylbenzene-sulfonate on Discharge Performance of AZ31 Magnesium Air Battery[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[11] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[12] Yue QIAO, Zhiping ZHU, Lei YANG, Zhifeng LIU. Monitoring and Simulated Experiments of Oxidation-Reduction Potential of Boiler Feedwater at High Temperatures[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[13] Jingling MA, Shuai TONG, Fengzhang REN, Guangxin WANG, Yaqiong LI, Jiuba WEN. Influences of Inhibitor L-Cysteine/zinc Oxide on Electrochemical Performance of 3102 Al-alloy in Alkaline Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[14] Zheng LIU, Haiying LI, Hao WANG, Yong ZHAO, Siwei XIE, Shufen ZHANG. Molecular Dynamics Simulation of Adsorption Behavior of Schiff Base Surfactants on Zn Surface in Aqueous Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[15] Wanjun PENG, Jiheng DING, Hao CHEN, Haibin YU. Corrosion Inhibition of Bio-based Inhibitor Furfuryl Glycidyl Ether[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
No Suggested Reading articles found!