Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (1): 89-94    DOI: 10.11902/1005.4537.2013.059
Current Issue | Archive | Adv Search |
Electrodeposition Behavior of Zinc in Alkaline Zincate Electrolyte
LI Yuanyuan1, DU Nan1(), SHU Weifa2, WANG Shuaixing1, ZHAO Qing1
1. National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology,Nanchang Hangkong University, Nanchang 330063, China
2. Nanjing Engineering Center of Aircraft Systems, Nanjing 211106, China
Download:  HTML  PDF(1101KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The cathodic reduction process of Zn in alkaline zincate electrolyte was studied by cyclic<br>voltammetry (CV), chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS), while the electrochemical nucleation behavior of Zn was also characterized by using chronoamperometry (CA) and scanning electron microscope (SEM) techniques. The results indicated that Zn existed in the electrolyte in the form of Zn(OH)42-, through a preceding reaction which then transformed into Zn(OH)2 during electrodepositing. As the species directly discharged on the cathode surface, the discharge of Zn(OH)2 is a two step-process, by the first step Zn(OH)ad was produced and adsorbed on the surface of cathode, and then was reduced to Zn by the second step. The two steps of reduction of Zn(OH)2 were all nonreversible reaction. It is beneficial to the electrodeposition of Zn when the applied potential reduces. The first discharge reaction of Zn(OH)2 occurred when the applied potential was at -1.40~-1.50 V. The two discharge reactions of Zn(OH)2 were both occurred in the alkaline zincate system when applied potential reduced to -1.60 V but in this case, Zn atoms only adsorbed on the cathode surface and the electrodeposition process was in a non-steady state. The adsorbed Zn could finally electrocrystallized to form a uniform Zn coating only when the applied potential reduces to -1.70~-1.80 V. The electrocrystallization of Zn from alkaline zincate electrolyte may follow a three-dimensional progressive nucleation mechanism.

Key words:  alkaline zincate electrolyte      zinc      electrodeposition      electrochemical impedance spectroscopy     
Received:  22 April 2013     
ZTFLH:  O646  

Cite this article: 

LI Yuanyuan, DU Nan, SHU Weifa, WANG Shuaixing, ZHAO Qing. Electrodeposition Behavior of Zinc in Alkaline Zincate Electrolyte. Journal of Chinese Society for Corrosion and protection, 2014, 34(1): 89-94.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.059     OR     https://www.jcscp.org/EN/Y2014/V34/I1/89

Fig.1  

平衡电势Ee与lnc(OH-)的关系曲线

Fig.2  

不同电流密度下的恒电流阶跃曲线

Fig.3  

1/2I的关系曲线

Fig.4  

不同NaOH含量下镀液的阴极稳态极化曲线

Fig.5  

-1.60 V电位条件下lni与lnc(OH-) 的关系曲线

Fig.6  

不同扫描速率下Zn电沉积的循环伏安曲线

Fig.7  

不同外加电位下碱性锌酸盐体系中锌电沉积过程的电化学阻抗Nyquist图及对应的Bode图

  

不同阶跃电位下Zn在碱性锌酸盐体系中电沉积的电流密度-时间暂态曲线及 (I/Im)2t/tm曲线

Fig.9  

-1.90 V电位下体系中不同阶跃时间时Zn在玻碳电极表面的SEM像

[1] Zhang X G. Efficiency of corrosion protection of steel by galvanizing and prospect for new coating development[J]. J. Chin. Soc. Corros. Prot., 2010, 30(2), 166-169
(章小鸽. 镀锌保护钢铁的效率和新型锌镀层的发展前景[J]. 中国腐蚀与防护学报, 2010, 30(2): 166-169)
[2] Yu J, Chen Y, Yang H, et al. The influence of organic additives on zinc electrocrystallization from KCl solutions[J]. J. Electrochem. Soc., 1999, 146: 1789-1793
[3] Danciu V, Cosoveanu V, Grunwald E. Some additives influence on zinc electrodeposition from weak-acid electrolytes[J]. Galvanotecnik, 2003, 3: 566-575
[4] Trejo G, Ortega R, Meas B Y, et al. Nucleation and growth of zinc form chloride concentrated solutions[J]. J. Electrochem. Soc., 1998, 145: 4090-4097
[5] Ravinadran V, Muralidharan V S. Cathodic process on zinc in alkaline zincate solution[J]. J. Pow. Sour., 1995, 55: 237-241
[6] Wang J M, Zhang L, Zhang C, et al. Effects of bismuth ion and tetrabutylammonium bromide on the dendritic growth of zinc in alkaline zincate solutions[J]. J. Pow. Sour., 2001, 102: 139-143
[7] Raeissi K, Golozar A, Seatchi M A. Effect of nucleation mode on the morphology and texture of electrodeposited zinc[J]. J. Appl. Electrochem., 2003, 33: 635-642
[8] Margarita M H, Manuel P P, Nilola B, et al. Identification of different silver nucleation processes on vitreous carbon surfaces from an ammonia electrolytic bath[J]. J. Electroanal. Chem., 1998, 339, 80-88
[9] Bernner A. Electrodeposition of Alloys [M]. New York and London: Academic Press, 1963: 22-35
[10] Bockris J O'M, Nagy Z, Damjanovic A. On the deposition and dissolution of zinc in alkaline solution[J]. J. Electrochem. Soc., 1972, 119(3): 285-289
[11] Peng W J, Wang Y Y. Mechanism of zinc electroplating in alkaline zincate solution[J]. J. Cent. South Univ. Technol., 2007, 14(1): 37-41
[12] Kavitha B, Santhosh P, Penukaelei M. Role of organic additives on zinc plating[J]. Surf. Coat. Technol., 2006, 201(6): 3438-3442
[13] Yang Y F, Gong Z Q, Li Q G. Electrochemical deposition of trivalent chromium[J]. J. Cent. South. Univ.(Sci. Technol.) 2008, 39, 112-117
(杨余芳, 龚竹青, 李强国. 三价铬的电化学沉积[J]. 中南大学学报 (自然科学版). 2008, 39: 112-117)
[14] Bonou M, Eyraud J, Crousier. Nucleation and growth of copper on glassy carbon and steel[J]. J. Appl. Electrochem., 1994, 24: 906-910
[15] Fletcher S. Some new formulae applicable to electrochemical nucleation/growth/collision[J]. J. Electrochim. Acta, 1983, 28(7): 917-923
[16] Zhong Q, Gu M, Li Q. Studies on the influence of sodium 3-mercaptopropanesulphonate additives on copper electrodeposition[J]. Acta Chim. Sin., 2010, 68: 17-19
(钟琴, 辜敏, 李强. 添加剂3-巯基-1-丙烷磺酸钠对铜电沉积影响的研究[J]. 化学学报, 2010, 68: 17-19)
[17] Scharifker B, Hills G. Theoretical and experimental studies of multiple nucleation[J]. Electrochim. Acta, 1983, 28: 879-889
[1] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[2] CAO Jingyi, FANG Zhigang, LI Liang, FENG Yafei, WANG Xingqi, SHOU Haiming, YANG Yange, CHU Guangzhe, YIN Wenchang. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Fresh Water and Salt Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[3] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[4] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[5] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[6] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[7] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[8] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[9] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[10] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[11] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[12] Xiuling LAN,Guangming LIU,Jiesheng ZHOU,Zhilei LIU,Shusen PENG,Maodong LI. Preparation and Properties of Organosilicone/SiO2Hybrid Sol Modified Acrylic Resin[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[13] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[14] Bin JIANG, Lilan ZENG, Tao LIANG, Haobo PAN, Yanxin QIAO, Jing ZHANG, Ying ZHAO. Directional Electrodeposition of Micro-nano Superhyd-rophobic Coating on 316L Stainless Steel[J]. 中国腐蚀与防护学报, 2018, 38(5): 438-446.
[15] Zheng LIU, Haiying LI, Hao WANG, Yong ZHAO, Siwei XIE, Shufen ZHANG. Molecular Dynamics Simulation of Adsorption Behavior of Schiff Base Surfactants on Zn Surface in Aqueous Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
No Suggested Reading articles found!