Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2012, Vol. 32 Issue (5): 428-430    DOI:
Current Issue | Archive | Adv Search |
A NEW METHOD FOR EVALUATING PITTING SENSIBILITY OF STAINLESS STEEL -- ULTIMATE ZERO PROBABILITY BREAKING POTENTIAL
JIA Zhijun1,2, LI Xiaogang2
1. Department of Chemical Engineering, Tsinghua University, Beijing 100084
2. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083
Download:  PDF(421KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to give an exact evaluation of pitting resistance of 1Cr13 stainless steels, the discrete data of breaking potential was analyzed. By the relationship of the pitting occurrence probability, threshold value and electrode potential, a new parameter called the ultimate zero probability breaking potential was obtained. It could be used for evaluating the pitting corrosion resistance of the stainless steel.

Key words:  stainless steel      breaking potential      threshold value      pitting corrosion      probability     
Received:  25 October 2011     
ZTFLH:  TG171  
Corresponding Authors:  LI Xiaogang     E-mail:  lixiaogang99@263.net

Cite this article: 

JIA Zhijun, LI Xiaogang. A NEW METHOD FOR EVALUATING PITTING SENSIBILITY OF STAINLESS STEEL -- ULTIMATE ZERO PROBABILITY BREAKING POTENTIAL. Journal of Chinese Society for Corrosion and protection, 2012, 32(5): 428-430.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I5/428

[1] Habib K, Bouresli K. Detection of localized corrosion of stainless steels by optical interferrometry [J]. Electrochim. Acta, 2000, 45(3): 203-209

[2] Mayorga C D, Marquez A P A, Sarmiento M Q, et al. Evaluation of corrosion in electrochemical systems using Michelson interferometry[J]. Opt. Laser Eng., 2007, 45(1): 140-144

[3] Yuan B Y, Wang C, Li L, et al. Real time observation of the anodic dissolution of copper in NaCl solution with the digital holography [J]. Electrochem. Commun., 2009, 11(7): 1373-1376

[4] Darowicki K, Krakowiak S, Slepski P. Evaluation of pitting corrosion by means of dynamic electrochemical impedance spectroscopy [J]. Electrochim. Acta, 2004, 49(17-18): 2909-2918

[5] Krakowiak S, Darowicki K, Slepski P. Impedance investigation of passive 304 stainless steel in the pit preinitiation state [J]. Electrochim. Acta, 2005, 50(13): 2699-2704

[6] Smulko J, Darowicki K, Zielinski A. Detection of random transients caused by pitting corrosion [J]. Electrochim. Acta, 2002, 47(8): 1297-1303

[7] Darowicki K, Krakowiak S. The current threshold value in potentiodynamic determination of the breakdown potential [J]. Electrochim. Acta, 1997, 42(16): 2559-2562

[8] Amri J, Gulbrandsen E, Nogueira R P. Numerical simulation of a single corrosion pit in CO2 and acetic acid environments [J]. Corros. Sci., 2010, 52(5): 1728-1737

[9] Linter B R, Burstein G T. Reactions of pipeline steels in carbon dioxide solutions [J]. Corros. Sci., 1999, 41(1): 117-139

[10] Zhang G A, Cheng Y F. Micro-electrochemical characterization of corrosion of pre-cracked X70 pipeline steel in a concentrated carbonate/bicarbonate solution [J]. Corros. Sci., 2010, 52(3): 960-968

[11] Yu J G, Luo J L, Norton P R. Investigation of hydrogen induced pitting active sites [J]. Electrochim. Acta, 2002, 47(25): 4019-4025

[12] Habib K, Muhana K. Detection of crevice corrosion of steels in seawater by optical interferometry [J]. Mater. Charact., 2000, 45(3): 203-209

[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[6] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[7] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[8] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[9] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[10] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[11] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[12] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[13] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[14] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[15] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
No Suggested Reading articles found!