Please wait a minute...
J Chin Soc Corr Pro  2011, Vol. 31 Issue (1): 72-75    DOI:
Research Articles Current Issue | Archive | Adv Search |
DISSOLUTION OF Cu IN BMIMBF4  IONIC LIQUID
ZHOU Dangui,HUA Yixin, ZHANG Qibo, DONG Tieguang
Faculty of Metallurgy and Energy Engineering,Kunming University of Science and Technology,Kunming 650093
Download:  PDF(449KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Dissolution characteristic of Cu in BMIMBF4 ionic liquid under different oxygen partial pressures and temperatures was investigated, and the saturation concentrations of Cu2+ in BMIMBF4 were also measured. The experimental results showed that Cu can only be dissolved in BMIMBF4 in the presence of oxygen and the dissolution rate of Cu2+ in BMIMBF4 improved with increase in the oxygen partial pressure and temperature. In addition, according to the experimental data, The value of apparent activation energy was found to be \linebreak21.76 kJ/mol in the temperature range from 25℃ to 70℃ under the oxygen partial pressure of 2.10×104 Pa. The dissolution rate equation of Cu in BMIMBF4 was obtained.
Key words:  Cu      dissolution      BMIMBF4 ionic liquid      oxygen partial pressure     
Received:  02 September 2009     
ZTFLH: 

TQ153.14

 
Corresponding Authors:  HUA Yixin     E-mail:  huayixin@gmail.com

Cite this article: 

ZHOU Dangui,HUA Yixin, ZHANG Qibo, DONG Tieguang. DISSOLUTION OF Cu IN BMIMBF4  IONIC LIQUID. J Chin Soc Corr Pro, 2011, 31(1): 72-75.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2011/V31/I1/72

[1] Seddon K R. Ionic liquids: a taste of the future [J]. Nat. Mater., 2003, 2(6): 363-365

[2] Zhao D B, Wu M, Kou Y, et al.Ionic liquids: applications in catalysis [J]. Catal Today, 2002,74(1-2): 157-189

[3] Zhao H, Xia S Q, Ma P S. Use of ionic liquids as  green  solvents for extractions [J]. J. Chem. Technol.Biotechnol., 2005, 80: 1089-1096

[4] Uerdingen M, Treber C, Balser M.Corrosion behaviour of ionic liquids [J]. Green Chem., 2005, 7: 321-325

[5] Welton T. Room-temperature ionic liquids-solvents for synthesis and catalysis [J]. Chem. Rev., 1999, 99: 2071-2084

[6] Wasserscheid P, Keim W. Ionic liquids-new solutions for transition metal catalysis [J]. Angew. Chem. Int. Ed., 2000, 39: 3772-3789

[7] Li R X. Green Solvents-Synthesis and Applications of Ionic Liquids [M]. Beijing: Chemistry Industry Press, 2004

    (李汝雄. 绿色溶剂-离子液体的合成与应用 [M]. 北京: 化学工业出版社, 2004: 10)

[8] Perissi I, Bardi U, Caporali S, et al. High temperature corrosion properties of ionic liquids [J]. Corros. Sci., 2006, 6: (12-14)

[9] Sheldon R. Catalytic reactions in ionic liquids [J]. Chem.Commun., 2001, 23: 2399-2407

[10] Husson-Borg P, Majer V, Costa Gomes M F.Solubilities of oxygen and carbon dioxide in buty1 methylimidazolium tetrafluoroborate as a function of temperature and at pressures close to atmospheric pressure [J]. J. Chem. Eng. Data, 2003, 48(3): 480-485

[11] Fuller J, Carlin R T, el al. The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate:electrochemical couples and physical properties [J]. J. Electrochem.Soc., 1997, 14: 3881-3885

[12] Chen Y H, Zhang S J, Yuan X L, et a1. Solubility of CO2 in imidazolium-based tetrafluoroborate ionic liquids [J]. Thermochim. Acta., 2006, 441(1): 42-44

[13] Deng Y Q. Ionic Liquid-Property, Preparation and Applications of Ionic Liquids [M]. Beijing: China Petrochemical Press, 2006, 7, 13-17

     (邓友全. 离子液体-性质、制备与应用 [M]. 北京: 中国石化出版社, 2006, 7, 13-17)

[14] Jacquemin J, Costa Gomes M F, Husson P, et al. Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283 K and 343 K and at pressures close to atmospheric [J]. J. Chem. Thermodyn., 2006, 38(4):490-502

[15] Liu Y Z, Xiao L P, Zhang K, et al. Electrochemical deoxidize capability of 2-nitrochlorobenzene in BMIMBF4-H2O [J].Chem. J. Chin. Univ., 2008, 10: 2059-2064

     (柳英姿, 肖丽萍, 张凯等.离子液体BMIMBF4-H2中邻氯硝基苯的电化学还原性能 [J].高等学校化学学报, 2008, 10: 2059-2064)

[16] Andrew P, Abbott K, McKenzie J. Application of ionic liquids to the electrodeposition of metals [J]. Phys. Chem. Chem. Phys., 2006, 8, 4265-4279

[17] Li X, Keith E J. Electrochemistry of 1-butyl-3-methyl-1H-imidazolium tetrafluoroborate ionic liquids [J]. J. Electrochem. Soc., 2003,150(6): E307-E311

[18] Yang K. Electrodeposition of Cu from Cu(BF4)2-[bmim]BF4 and CuSO4-H2O-[bmim]BF4 [D]. Yunnan: Kunming University of Science and Technology, 2007,4, 20

     (杨坤. 铜在Cu(BF4)2-[bmim]BF4及CuSO4-H2O-[bmim] BF4体系中的电沉积研究 [D]. 云南: 昆明理工大学, 2007, 4, 20)

[19] NuLi Y, Yang J, Wang P.Electrodeposition of magnesium film from BMIMBF4 ionic liquid [J].Appl., Surf. Sci., 2006, 252: 8086-8090

[20] Wang P, NuLi Y, et al. Mixed ionic liquid as electrolyte for reversible deposition and dissolution of magnesium [J]. Surf. Coat. Technol., 2006, 201:3783-3787

[21] Roberta B, Stefano C, Alessandro L, et al. Silver electrodeposition from air and water-stable ionic liquid: An environmentally friendly alternative to cyanide baths [J]. Surf.Coat. Technol., 2007, 201: 9485-9490
[1] WANG Lei, DONG Junhua, HAN Da, LIANG Jiankun, LI Quan, KE Wei. Phenonmenon of Cu Segregation in Cu-containing steel During Soaking at 1150 ℃[J]. 中国腐蚀与防护学报, 2020, 40(6): 545-552.
[2] LU Shuang, REN Zhengbo, XIE Jinyin, LIU Lin. Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[3] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] LI Ziyun, WANG Gui, LUO Siwei, DENG Peichang, HU Jiezhen, DENG Junhao, XU Jingming. Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[5] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[6] SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[7] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[8] WANG Tingyong, DONG Ruyi, XU Shi, WANG Hui. Electrochemical Properties of Graphene Modified Mixed Metal Oxide Anodes of Ti/IrTaSnSb-G in NaCl Solutions at Low Temperature[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[9] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[10] SUN Shuo, YANG Jie, QIAN Xinzhu, CHANG Renli. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[11] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[12] BAI Miaomiao, BAI Ziheng, JIANG Li, ZHANG Dongjiu, YAO Qiong, WEI Dan, DONG Chaofang, XIAO Kui. Corrosion Behavior of H62 Brass Alloy/TC4 Titanium Alloy Welded Specimens[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[13] ZHENG Yanxin, LIU Ying, SONG Qingsong, ZHENG Feng, JIA Yuchuan, HAN Peide. High-temperature Oxidation Behavior and Wear Resistance of Copper-based Composites with Reinforcers of C, ZrSiO4 and Fe[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[14] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[15] Zhifeng LIU,Zhiping ZHU,Chun SHI,Zhaoxin HUANG. Preparation of Sulfuric Acid Vapor for Simulation of Sulfuric Acid Dew Point Corrosion by Inert Gas Carrying Method[J]. 中国腐蚀与防护学报, 2020, 40(1): 1-9.
No Suggested Reading articles found!