Please wait a minute...
J Chin Soc Corr Pro  2010, Vol. 30 Issue (6): 475-480    DOI:
Research Articles Current Issue | Archive | Adv Search |
INHIBITION PERFORMANCE AND MECHANISM OF LAURIC ACID IN CO2 SATURATED NaCl SOLUTION
LU Zhaoling1, GUO Xingpeng2
1. Analysis and Testing Center, Huazhong University of Science & Technology, Wuhan 430074
2. School of Chemistry & Chemical Technology, Wuhan 430074
Download:  PDF(960KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The inhibition performance of lauric acid on N80 steel in CO2 saturated NaCl solution at different pH values (4.9, 6.9 and 7.4 respectively) were investigated using electrochemical methods and the attenuated total reflection Fourier-transform infrared (ATR-FTIR). The results showed that lauric acid has more obvious inhibition ability to the cathode process in the lower pH value. While at higher pH value, the inhibition effect is more obvious to the anode process. At the middle pH value, it showed the transition-state characteristics and has the inhibition effect both to anode and cathode processes. The different adsorption state of the inhibitor at various pH values has different interaction with the metal surface which explains the difference of the inhibition performance in the test environments.
Key words:  carbon dioxide      lauric acid      pH      inhibition      N80 steel     
Received:  09 August 2010     
ZTFLH: 

TG174

 
Corresponding Authors:  Lu Zhaoling     E-mail:  zhaolinglu@126.com

Cite this article: 

LU Zhaoling, GUO Xingpeng. INHIBITION PERFORMANCE AND MECHANISM OF LAURIC ACID IN CO2 SATURATED NaCl SOLUTION. J Chin Soc Corr Pro, 2010, 30(6): 475-480.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2010/V30/I6/475

参考文献:

[1] Jovancicevic V, Ramachandran S, Prince P. Inhibition of carbon dioxide corrosion of mild steel by imidazolines and their precursors[J]. Corrosion, 1980, 36(8): 416-422

[2] Jovancicevic V, Ramachandran S, Prince P, Inhibition of carbon dioxide corrosion of mild steel by imidazolines and their precursors[J] Corrosion, 1999, 55(5): 449-455

[3] Mora-Mendoza J L, Turgoose S. Fe3C influence on the corrosion rate of mild steel in aqueous CO2 systems under turbulent flow conditions[J] Corrosion Science, 2002, 44: 1223-1246

[4] Hernandez S, Vera J R. A Statistical approach for studying CO2 Corrosion inhibition of carbon steel using electrochemical impedance spectroscopy[J] NACE: Corrosion, 1998, paper no23

[5] Al-Sayed M. Effect of flow and pH on CO2 corrosion and inhibition. PhD. Dissertation, Corrosion and Protection Centre, UMIST, 1989

[6] Kapusta S D, Rhodes P R, Silverman S A. Inhibitor testing for CO2 environments[J]. NACE: Corrosion, 1991, paper no 471

[7] Moiseeva L S, Rashevskaya N S, Effect of pH value on corrosion behavior of steel in CO2-containing aqueous media[J] Journal of Applied Chenmistry, 2002, 75(10): 1625-1633

[8] Lv X H, Zhao G X, Lu M X, Research Status of CO2 Corrosion on N80 Oil Casing Tube Steel[J] Corrosion Science and Protection Technology, 2005, 17(2): 75-78 (吕祥鸿, 赵国仙, 路民旭,常压条件下N80钢的CO2腐蚀的电化学特性, 腐蚀科学与防护技术,2005, 17(2): 75-78)

[9] Popova, A, Sokolova, E, Raicheva, S, et al. AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives[J] Corrosion Science, 2003, 45: 33-58.

[10] Karman F H, Felhosi I, Kalman E, et al. The role of oxide layer formation during corrosion inhibition of mild steel in neutral aqueous media[J] Electrochimica Acta, 1998, 43(1-2): 69-75

[11] Lopez D A, Simison S N, de Sanchez S R.. The influence of steel microstructure on CO2 corrosion. EIS studies on the inhibition efficiency of benzimidazole[J] Electrochimica Acta, 2003, 48(7): 845-854

[12] Gray L G S, Anderson B G, Danysh M J, et al. Effect of pH and Temperature on the Mechanism of Carbon Steel Corrosion by Aqueous Carbon Dioxide[J] NACE: Corrosion, 1990, paper no. 40

[13] Kuznetsov Yu I, Ibatullin K A. On the Inhibition of the Carbon Dioxide Corrosion of Steel by Carboxylic Acids[J] Zashchita Metallov, 2002, 38(5): 496-501

[14] Yang H Y, Xao D Z, Chen J J, et al., Electrichemical behavior and inhibition performance of inhibitor IMC-871-G in CO2 saturated solution[J] Corrosion Science and Protection Technology, 2000, 12(4): 211-214 (杨怀玉, 曹殿珍, 陈家坚等, CO2饱和溶液中缓蚀剂的电化学行为及缓蚀性能,腐蚀科学与防护技术, 2000, 12(4): 211-214)

[15] De Marco R, Durnie W, Jefferson A, et al. Surface analysis of adsorbed carbon dioxide corrosion inhibitors[J] Corrosion, 2001, 57(1): 9-18
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[3] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[4] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[5] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[6] LU Shuang, REN Zhengbo, XIE Jinyin, LIU Lin. Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[7] ZHAO Dongyang, ZHOU Yu, WANG Dongying, NA Duo. Effect of Phosphating on Hydrogen Embrittlement of SA-540 B23 Steel for Nuclear Reactor Coolant Pump Bolt[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[8] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[9] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[10] LI Ziyun, WANG Gui, LUO Siwei, DENG Peichang, HU Jiezhen, DENG Junhao, XU Jingming. Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[11] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[12] DING Qingmiao, QIN Yongxiang, CUI Yanyu. Galvanic Corrosion of Aircraft Components in Atmospheric Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[13] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[14] WANG Tingyong, DONG Ruyi, XU Shi, WANG Hui. Electrochemical Properties of Graphene Modified Mixed Metal Oxide Anodes of Ti/IrTaSnSb-G in NaCl Solutions at Low Temperature[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[15] WANG Yingjun, LIU Honglei, WANG Guojun, DONG Kaihui, SONG Yingwei, NI Dingrui. Investigation of Anodic Film on a Novel RE-containing Al-Alloy Al-Zn-Mg-Cu-Sc[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
No Suggested Reading articles found!