Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (6): 1589-1600    DOI: 10.11902/1005.4537.2024.064
Current Issue | Archive | Adv Search |
Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting
YI Shuo1, ZHOU Shengxuan1, YE Peng1, DU Xiaojie1, XU Zhenlin1,2, HE Yizhu1,2()
1. School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243032, China
2. Anhui Key Laboratory of Materials and Processing, Anhui University of Technology, Ma'anshan 243032, China
Cite this article: 

YI Shuo, ZHOU Shengxuan, YE Peng, DU Xiaojie, XU Zhenlin, HE Yizhu. Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1589-1600.

Download:  HTML  PDF(13146KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Cu-containing Fe-Mn-Cr-Ni medium entropy alloy (MEA) was prepared by selective laser melting (SLM) and followed by post aging treatment, and then its microstructure and corrosion performance in 1 mol/L NaOH solution were studied. The results show that the Cu-rich phase at grain boundaries of SLM-MEA is preferentially dissolved after aging at 300oC, which inhibits the dissolution of the active site and improves the corrosion resistance. Compared with the SLM alloy, the corrosion current of the alloy after being aged at 300oC decreased by 37.37% and the polarization resistance increased by 2 times. As the aging temperature increased, the Cu-rich precipitates migrate from grain boundaries to the interior of the cellular sub-crystal. Cr-rich carbides coarsened with the increasing temperature, which weakened the protective ability of the passivation film. In addition, the dissolution of Cu-rich precipitates in the alloy aged at 300oC increased the cation ratio of Cr + Ni to Fe + Mn in the passivation film, which was 1.2 times that of the as prepared SLM alloy, and promoted the formation of a denser and continuous passivation film.

Key words:  medium entropy alloy      selective laser melting      aging treatment      microstructure      corrosion resistance     
Received:  01 March 2024      32134.14.1005.4537.2024.064
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51971001);Key Research and Development Project of Anhui Province(2022a05020017)
Corresponding Authors:  HE Yizhu, E-mail: heyizhu@ahut.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.064     OR     https://www.jcscp.org/EN/Y2024/V44/I6/1589

Fig.1  Medium entropy alloy powder: (a) powder morphology, (b) distribution of powder size, (c) etched cross-section and compositional analysis
Fig.2  Schematic diagram of the scanning strategy and cutting position of the specimen
Fig.3  XRD patterns of SLM MEA after aging treatments (a) and enlarged pattern of (200) (b)
Fig.4  Microstructure of SLM MEA after different aging treatments: (a, b) UT, (c, d) AT-200, (e, f) AT-300, (g, h) AT-500, (i, j) AT-700
SampleSpectrum pointFeMnCrNiCuC
AT-200146.9020.8111.9210.046.473.86
247.5521.1812.3110.524.923.52
AT-300340.1621.1911.9611.4411.773.47
446.5019.7213.3211.094.744.57
AT-500542.0119.6711.8712.089.494.89
646.5120.2013.9010.815.094.17
AT-700746.9317.2418.479.274.953.14
836.1517.9623.918.4511.082.45
Table 1  Chemical composition of the marked point in Fig.4
Fig 5  OCP of samples with different aging states in 1 mol/L NaOH solution
Fig.6  Dynamic potential polarization curves (a) and relative parameters (b) of samples under different aging states
Fig.7  Nyquist (a), impedance module (b) and phase angle (c) plots of samples with different aging states in 1 mol/L NaOH solution and equivalent circuit (d)
Sample

Rs

Ω·cm2

Cf

Ω-1·cm-2·s n

Rf

Ω·cm2

Qdl

Ω-1·cm-2·s n

n2

Rct

Ω·cm2

W

Ω-1·cm-2·s n

Cd

Ω-1·cm-2·s n

Rt

Ω·cm2

UT33.867.831 × 10-616.121.418 × 10-40.70283.494 × 1027.720 × 10-33.347 × 10-54.014 × 102
AT-20024.206.228 × 10-614.221.515 × 10-40.60616.725 × 1022.998 × 10-32.721 × 10-57.472 × 102
AT-30027.456.167 × 10-624.381.076 × 10-50.42787.650 × 1023.461 × 10-32.594 × 10-57.912 × 102
AT-50049.356.280 × 10-618.065.290 × 10-50.42446.699 × 1022.636 × 10-32.958 × 10-56.957 × 102
AT-70058.148.544 × 10-614.156.381 × 10-40.42112.911 × 1023.243 × 10-34.999 × 10-53.447 × 102
Table 2  Fitted values of the parameters in the equivalent circuit
Fig.8  Electrochemical surface morphologies of samples with different aging states in 1 mol/L NaOH solution: (a) UT, (b) AT-200, (c) AT-300, (d) AT-500, (e) AT-700
Fig.9  3D electrochemical corrosion morphologies (a-e) and corresponding corrosion depth (f) of UT (a), AT-200 (b), AT-300 (c), AT-500 (d) and AT-700 (e)
Fig.10  XPS spectra of passive film formed after 7 d of immersion in 1 mol/L NaOH solution: (a1-a6) UT, (b1-b6) AT-300
Fig.11  Cation content (atomic fraction) in passive film of UT (a) and AT-300 (b) formed by immersion in 1 mol/L NaOH solution for 7 d
Fig.12  Schematic illustration showing the corrosion processes in 1 mol/L NaOH solution: (a, b) UT; (c, d) AT-300, (e, f) AT-700
1 Hou S, Sun M Y, Bai M J, et al. A hybrid prediction frame for HEAs based on empirical knowledge and machine learning [J]. Acta Mater., 2022, 228: 117742
2 George E P, Curtin W A, Tasan C C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms [J]. Acta Mater., 2020, 188: 435
doi: 10.1016/j.actamat.2019.12.015
3 Zhang L S, Ma G L, Fu L C, et al. Recent progress in high-entropy alloys [J]. Adv. Mat. Res., 2013, 631-632: 227
4 Chang X T, Song J Q, Wang B, et al. Effect of micro-alloying with Cr, N and Al on corrosion resistance of high manganese austenitic steel in acidic salt spray environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 47
(常雪婷, 宋嘉琪, 王冰 等. 微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究 [J]. 中国腐蚀与防护学报, 2024, 44: 47)
5 Han B L, Zhang C C, Feng K, et al. Additively manufactured high strength and ductility CrCoNi medium entropy alloy with hierarchical microstructure [J]. Mater. Sci. Eng., 2021, 820A: 141545
6 Jiang H, Nai Q L, Xu C, et al. Sensitive temperature and reason of rapid fatigue crack propagation in nickel-based superalloy [J]. Acta Metall. Sin., 2023, 59: 1190
doi: 10.11900/0412.1961.2023.00151
(江 河, 佴启亮, 徐 超 等. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因 [J]. 金属学报, 2023, 59: 1190)
7 Shang J, Gu Y, Zhao J, et al. Corrosion behavior in molten salts at 850 ℃ and its effect on mechanical properties of Hastelloy X alloy fabricated by additive manufacturing [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 671
(尚 进, 古 岩, 赵 京 等. 增材制造Hastelloy X合金在850℃混合硫酸盐中热腐蚀行为及其对力学性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 671)
8 Wang Y Q, Liu B, Yan K, et al. Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction [J]. Acta Mater., 2018, 154: 79
9 Gu D D, Wang H Q, Chang F, et al. Selective laser melting additive manufacturing of TiC/AlSi10Mg bulk-form nanocomposites with tailored microstructures and properties [J]. Phys. Procedia, 2014, 56: 108
10 Xia X J, Wan X Y, Chen Y X, et al. Effect of heat treatments on corrosion behavior of 3Cr low carbon steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 656
(夏晓健, 万芯媛, 陈云翔 等. 两种热处理工艺对3Cr钢腐蚀行为影响及机理研究 [J]. 中国腐蚀与防护学报, 2023, 43: 656)
doi: 10.11902/1005.4537.2022.195
11 Zhu Z G, Ma K H, Yang X, et al. Annealing effect on the phase stability and mechanical properties of (FeNiCrMn)(100- x) Cox high entropy alloys [J]. J. Alloy. Compd., 2017, 695: 2945
12 Zhou C S, Wu F Y, Tang D, et al. Effect of subcritical-temperature heat treatment on corrosion of SLM SS316L with different process parameters [J]. Corros. Sci., 2023, 218: 111214
13 Sarkar S, Mukherjee S, Kumar C S, et al. Effects of heat treatment on microstructure, mechanical and corrosion properties of 15-5 PH stainless steel parts built by selective laser melting process [J]. J Manuf. Process., 2020, 50: 279
doi: 10.1016/j.jmapro.2019.12.048
14 Xi T, Shahzad M B, Xu D K, et al. Effect of copper addition on mechanical properties, corrosion resistance and antibacterial property of 316L stainless steel [J]. Mater. Sci. Eng., 2017, 71C: 1079
15 Wu W, Dai Z Y, Liu Z Y, et al. Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion [J]. Corros. Sci., 2021, 183: 109353
16 Xu Q F, Gao K W, Lv W T, et al. Effects of alloyed Cr and Cu on the corrosion behavior of low-alloy steel in a simulated groundwater solution [J]. Corros. Sci., 2016, 102: 114
17 Elangeswaran C, Cutolo A, Muralidharan G K, et al. Effect of post-treatments on the fatigue behaviour of 316L stainless steel manufactured by laser powder bed fusion [J]. Int. J. Fatigue, 2019, 123: 31
18 Prashanth K G, Eckert J. Formation of metastable cellular microstructures in selective laser melted alloys [J]. J. Alloy. Compd., 2017, 707: 27
19 Wang P J, Zhao J B, Ma L W, et al. Effect of grain ultra-refinement on microstructure, tensile property, and corrosion behavior of low alloy steel [J]. Mater. Charact., 2021, 179: 111385
20 Li W J, Che X Y, Tang Y C, et al. Effect of plastic deformation processing on corrosion behavior of pure zinc in a leaching solution of soil at Tianjin [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 497
(李文杰, 车晓钰, 唐永存 等. 塑性变形加工对纯锌在天津土壤浸出液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 497)
doi: 10.11902/1005.4537.2023.108
21 Zhao J L, Zhai Z F, Sun D, et al. Antibacterial durability and biocompatibility of antibacterial-passivated 316L stainless steel in simulated physiological environment [J]. Mater. Sci. Eng., 2019, 100C: 396
22 Wang J Y, Li W H, Yang H L, et al. Corrosion behavior of CoCrNi medium-entropy alloy compared with 304 stainless steel in H2SO4 and NaOH solutions [J]. Corros. Sci., 2020, 177: 108973
23 Della Rovere C A, Alano J H, Silva R, et al. Characterization of passive films on shape memory stainless steels [J]. Corros. Sci., 2012, 57: 154
24 Lu Z, Zhang C C, Fang R R, et al. Microstructure evolution and corrosion behavior of the novel maraging stainless steel manufactured by selective laser melting [J]. Mater. Charact., 2022, 190: 112078
25 Wang Y, Qiu Y B, Chen Z Y, et al. Corrosion of polypyrrole: kinetics of chemical and electrochemical processes in NaOH solutions [J]. Corros. Sci., 2017, 118: 96
26 Luo H, Zou S W, Chen Y H, et al. Influence of carbon on the corrosion behaviour of interstitial equiatomic CoCrFeMnNi high-entropy alloys in a chlorinated concrete solution [J]. Corros. Sci., 2020, 163: 108287
27 Xu Z L, Zhang H, Du X J, et al. Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing [J]. Corros. Sci., 2020, 177: 108954
28 Jabs T, Borthen P, Strehblow H H. X‐ray photoelectron spectroscopic examinations of electrochemically formed passive layers on Ni‐Cr alloys [J]. J. Electrochem. Soc., 1997, 144: 1231
29 Marcus P, Grimal J M. The anodic dissolution and passivation of NiCrFe alloys studied by ESCA [J]. Corros. Sci., 1992, 33: 805
30 Zhao B Z, Zhu M, Yuan Y F, et al. Comparison of corrosion resistance of CoCrFeMnNi high entropy alloys with pipeline steels in an artificial alkaline soil solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 425
(赵宝珠, 朱 敏, 袁永锋 等. CoCrFeMnNi高熵合金和管线钢在碱性土壤环境中的耐蚀性对比研究 [J]. 中国腐蚀与防护学报, 2022, 42: 425)
doi: 10.11902/1005.4537.2021.161
31 Li Z, Wan H X, Song D D, et al. Corrosion behavior of X80 pipeline steel in the presence of Brevibacterium halotolerans in Beijing soil [J]. Bioelectrochemistry, 2019, 126: 121
32 Li D, Liang Y, Liu X X, et al. Corrosion behavior of Ti3AlC2 in NaOH and H2SO4 [J]. J. Eur. Ceram. Soc., 2010, 30: 3227
33 Tian D H, Jiao H D, Xiao J S, et al. The corrosion behavior of a Ni0.91Cr0.04Cu0.05 anode for the electroreduction of Fe2O3 in molten NaOH [J]. J. Alloy. Compd., 2018, 769: 977
34 Gao Z Y, Jiang B, Fan Z B, et al. Corrosion behavior of typical grounding materials in artificial alkaline soil solution [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 191
(高智悦, 姜 波, 樊志彬 等. 典型接地材料在碱性土壤模拟液中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 191)
doi: 10.11902/1005.4537.2022.061
35 Wu J F, Zheng X W, Li W P, et al. Copper corrosion inhibition by combined effect of inhibitor and passive film in alkaline solution [J]. Res. Chem. Intermed., 2015, 41: 8557
36 Yin Y Y, Li H X, Pan S H, et al. Electrochemical behaviour of passivation film formed on SLM-fabricated Hastelloy X superalloy surface in 10wt% NaNO3 solution [J]. Corros. Sci., 2022, 206: 110494
37 Kong D C, Dong C F, Ni X Q, et al. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes [J]. J. Mater. Sci. Technol., 2019, 35: 1499
doi: 10.1016/j.jmst.2019.03.003
38 Fattah-Alhosseini A, Golozar M A, Saatchi A, et al. Effect of solution concentration on semiconducting properties of passive films formed on austenitic stainless steels [J]. Corros. Sci., 2010, 52: 205
39 Ben Rhouma A, Amadou T, Sidhom H, et al. Correlation between microstructure and intergranular corrosion behavior of low delta-ferrite content AISI 316L aged in the range 550-700oC [J]. J. Alloy. Compd., 2017, 708: 871
40 Shang Q, Man C, Pang K, et al. Mechanism of post-heat treatment on intergranular corrosion behavior of SLM-316L stainless steel with different carbon content [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1273
(商 强, 满 成, 逄 昆 等. 后热处理对不同含碳量SLM-316L不锈钢晶间腐蚀行为的作用机制研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1273)
41 Lewis M H, Hattersley B. Precipitation of M23C6 in austenitic steels Precipitation de carbures M23C6, dans les aciers austenitiquesAusscheidung von M23C6 in austenitischen stählen [J]. Acta Metall., 1965, 13: 1159
42 Kaneko K, Fukunaga T, Yamada K, et al. Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel [J]. Scr. Mater., 2011, 65: 509
[1] WEI Kezheng, JIANG Wenlong, GONG Yiwei, QIU Xin, DING Hanlin, XIANG Chongchen, WANG Zijian. Effect of Aging Time on Precipitation of Second Phase and Corrosion Performance of Prismatic Plane of As-forged AZ80 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(6): 1557-1565.
[2] LU Tianai, JIANG Wenhao, WU Wei, ZHANG Junxi. Surface Modification of Corrosion-resistant Cast Iron Based on Functional Requirements of Grounding Materials[J]. 中国腐蚀与防护学报, 2024, 44(6): 1443-1453.
[3] MA Jinyao, DONG Nan, GUO Zhensen, HAN Peide. Effect of B and Ce Micro-alloying on Secondary Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[4] CHENG Yonghe, FU Junwei, ZHAO Maomi, SHEN Yunjun. Research Progress on Corrosion Resistance of High-entropy Alloys[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[5] ZHAO Qian, ZHANG Jie, MAO Ruirui, MIAO Chunhui, BIAN Yafei, TENG Yue, TANG Wenming. Stress Corrosion and Its Mechanism of Hot-dip Galvanized Coating on Q235 Steel Structure[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[6] HONG Xiaomu, WANG Yongqiang, LI Na, TIAN Kai, DU Juan. Effect of Aging on Microstructures and Localized Corrosion of Custom455 Martensitic Age-hardening Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(5): 1285-1294.
[7] LYU Xiaoming, WANG Zhenyu, HAN En-Hou. Preparation and Corrosion Resistance of Nano-ZrO2 Modified Epoxy Thermal Insulation Coatings[J]. 中国腐蚀与防护学报, 2024, 44(5): 1234-1242.
[8] MA Xiaowei, XUE Rongjie, WANG Taotao, YANG Liang, LIU Zhenguang. Comparison of Corrosion Resistance of Zr-based Amorphous Alloys and Traditional Alloys in Seawater[J]. 中国腐蚀与防护学报, 2024, 44(4): 949-956.
[9] TIAN Mengzhen, WANG Yong, LI Tao, WANG Chuan, GUO Quanzhong, GUO Jianxi. Effect of Electrical Parameters on Energy Consumption and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 1064-1072.
[10] LIN Yi, LIU Tao, GUO Yanbing, RUAN Qing, GUO Zhangwei, DONG Lihua. Research and Development of Welding Materials For Low-temperature Steel and Corrosion Evaluation Methods[J]. 中国腐蚀与防护学报, 2024, 44(4): 957-964.
[11] ZHU Huiwen, ZHENG Li, ZHANG Hao, YU Baoyi, CUI Zhibo. Effect of Be on Oxidation Behavior and Flame Retardancy of WE43 Mg-alloy at High-temperature[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[12] HE Jiaxuan, ZHANG Yutong, GUAN Xudong, TANG Jianhua, HUANG Hai, ZHAO Xuhui, TANG Yuming, ZUO Yu. Present Status and Progress of Corrosion Protection for Microchannel Heat Exchangers of Al-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 993-1000.
[13] LIU Jiuyun, DONG Lijin, ZHANG Yan, WANG Qinying, LIU Li. Research Progress on Sulfide Stress Corrosion Cracking of Dissimilar Weld Joints in Oil and Gas Fields[J]. 中国腐蚀与防护学报, 2024, 44(4): 863-873.
[14] GENG Zhenzhen, ZHANG Yuzhu, DU Xiaojiang, WU Hanhui. Synergistic Effect of S2- and Cl- on Corrosion and Passivation Behavior of 316L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[15] SHI Chao, LI Jiahao, WANG Rongxiang, ZHANG Bo, ZHOU Lanxin, LIU Guangming, SHAO Yawei. Effect of Different Bias Voltages on Anti-corrosion Properties of Multi-arc Ion Plated Al-coatings on 45# Carbon Steel[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
No Suggested Reading articles found!