|
|
Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting |
YI Shuo1, ZHOU Shengxuan1, YE Peng1, DU Xiaojie1, XU Zhenlin1,2, HE Yizhu1,2( ) |
1. School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243032, China 2. Anhui Key Laboratory of Materials and Processing, Anhui University of Technology, Ma'anshan 243032, China |
|
Cite this article:
YI Shuo, ZHOU Shengxuan, YE Peng, DU Xiaojie, XU Zhenlin, HE Yizhu. Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1589-1600.
|
Abstract The Cu-containing Fe-Mn-Cr-Ni medium entropy alloy (MEA) was prepared by selective laser melting (SLM) and followed by post aging treatment, and then its microstructure and corrosion performance in 1 mol/L NaOH solution were studied. The results show that the Cu-rich phase at grain boundaries of SLM-MEA is preferentially dissolved after aging at 300oC, which inhibits the dissolution of the active site and improves the corrosion resistance. Compared with the SLM alloy, the corrosion current of the alloy after being aged at 300oC decreased by 37.37% and the polarization resistance increased by 2 times. As the aging temperature increased, the Cu-rich precipitates migrate from grain boundaries to the interior of the cellular sub-crystal. Cr-rich carbides coarsened with the increasing temperature, which weakened the protective ability of the passivation film. In addition, the dissolution of Cu-rich precipitates in the alloy aged at 300oC increased the cation ratio of Cr + Ni to Fe + Mn in the passivation film, which was 1.2 times that of the as prepared SLM alloy, and promoted the formation of a denser and continuous passivation film.
|
Received: 01 March 2024
32134.14.1005.4537.2024.064
|
|
Fund: National Natural Science Foundation of China(51971001);Key Research and Development Project of Anhui Province(2022a05020017) |
Corresponding Authors:
HE Yizhu, E-mail: heyizhu@ahut.edu.cn
|
1 |
Hou S, Sun M Y, Bai M J, et al. A hybrid prediction frame for HEAs based on empirical knowledge and machine learning [J]. Acta Mater., 2022, 228: 117742
|
2 |
George E P, Curtin W A, Tasan C C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms [J]. Acta Mater., 2020, 188: 435
doi: 10.1016/j.actamat.2019.12.015
|
3 |
Zhang L S, Ma G L, Fu L C, et al. Recent progress in high-entropy alloys [J]. Adv. Mat. Res., 2013, 631-632: 227
|
4 |
Chang X T, Song J Q, Wang B, et al. Effect of micro-alloying with Cr, N and Al on corrosion resistance of high manganese austenitic steel in acidic salt spray environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 47
|
|
(常雪婷, 宋嘉琪, 王冰 等. 微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究 [J]. 中国腐蚀与防护学报, 2024, 44: 47)
|
5 |
Han B L, Zhang C C, Feng K, et al. Additively manufactured high strength and ductility CrCoNi medium entropy alloy with hierarchical microstructure [J]. Mater. Sci. Eng., 2021, 820A: 141545
|
6 |
Jiang H, Nai Q L, Xu C, et al. Sensitive temperature and reason of rapid fatigue crack propagation in nickel-based superalloy [J]. Acta Metall. Sin., 2023, 59: 1190
doi: 10.11900/0412.1961.2023.00151
|
|
(江 河, 佴启亮, 徐 超 等. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因 [J]. 金属学报, 2023, 59: 1190)
|
7 |
Shang J, Gu Y, Zhao J, et al. Corrosion behavior in molten salts at 850 ℃ and its effect on mechanical properties of Hastelloy X alloy fabricated by additive manufacturing [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 671
|
|
(尚 进, 古 岩, 赵 京 等. 增材制造Hastelloy X合金在850℃混合硫酸盐中热腐蚀行为及其对力学性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 671)
|
8 |
Wang Y Q, Liu B, Yan K, et al. Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction [J]. Acta Mater., 2018, 154: 79
|
9 |
Gu D D, Wang H Q, Chang F, et al. Selective laser melting additive manufacturing of TiC/AlSi10Mg bulk-form nanocomposites with tailored microstructures and properties [J]. Phys. Procedia, 2014, 56: 108
|
10 |
Xia X J, Wan X Y, Chen Y X, et al. Effect of heat treatments on corrosion behavior of 3Cr low carbon steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 656
|
|
(夏晓健, 万芯媛, 陈云翔 等. 两种热处理工艺对3Cr钢腐蚀行为影响及机理研究 [J]. 中国腐蚀与防护学报, 2023, 43: 656)
doi: 10.11902/1005.4537.2022.195
|
11 |
Zhu Z G, Ma K H, Yang X, et al. Annealing effect on the phase stability and mechanical properties of (FeNiCrMn)(100- x) Cox high entropy alloys [J]. J. Alloy. Compd., 2017, 695: 2945
|
12 |
Zhou C S, Wu F Y, Tang D, et al. Effect of subcritical-temperature heat treatment on corrosion of SLM SS316L with different process parameters [J]. Corros. Sci., 2023, 218: 111214
|
13 |
Sarkar S, Mukherjee S, Kumar C S, et al. Effects of heat treatment on microstructure, mechanical and corrosion properties of 15-5 PH stainless steel parts built by selective laser melting process [J]. J Manuf. Process., 2020, 50: 279
doi: 10.1016/j.jmapro.2019.12.048
|
14 |
Xi T, Shahzad M B, Xu D K, et al. Effect of copper addition on mechanical properties, corrosion resistance and antibacterial property of 316L stainless steel [J]. Mater. Sci. Eng., 2017, 71C: 1079
|
15 |
Wu W, Dai Z Y, Liu Z Y, et al. Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion [J]. Corros. Sci., 2021, 183: 109353
|
16 |
Xu Q F, Gao K W, Lv W T, et al. Effects of alloyed Cr and Cu on the corrosion behavior of low-alloy steel in a simulated groundwater solution [J]. Corros. Sci., 2016, 102: 114
|
17 |
Elangeswaran C, Cutolo A, Muralidharan G K, et al. Effect of post-treatments on the fatigue behaviour of 316L stainless steel manufactured by laser powder bed fusion [J]. Int. J. Fatigue, 2019, 123: 31
|
18 |
Prashanth K G, Eckert J. Formation of metastable cellular microstructures in selective laser melted alloys [J]. J. Alloy. Compd., 2017, 707: 27
|
19 |
Wang P J, Zhao J B, Ma L W, et al. Effect of grain ultra-refinement on microstructure, tensile property, and corrosion behavior of low alloy steel [J]. Mater. Charact., 2021, 179: 111385
|
20 |
Li W J, Che X Y, Tang Y C, et al. Effect of plastic deformation processing on corrosion behavior of pure zinc in a leaching solution of soil at Tianjin [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 497
|
|
(李文杰, 车晓钰, 唐永存 等. 塑性变形加工对纯锌在天津土壤浸出液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 497)
doi: 10.11902/1005.4537.2023.108
|
21 |
Zhao J L, Zhai Z F, Sun D, et al. Antibacterial durability and biocompatibility of antibacterial-passivated 316L stainless steel in simulated physiological environment [J]. Mater. Sci. Eng., 2019, 100C: 396
|
22 |
Wang J Y, Li W H, Yang H L, et al. Corrosion behavior of CoCrNi medium-entropy alloy compared with 304 stainless steel in H2SO4 and NaOH solutions [J]. Corros. Sci., 2020, 177: 108973
|
23 |
Della Rovere C A, Alano J H, Silva R, et al. Characterization of passive films on shape memory stainless steels [J]. Corros. Sci., 2012, 57: 154
|
24 |
Lu Z, Zhang C C, Fang R R, et al. Microstructure evolution and corrosion behavior of the novel maraging stainless steel manufactured by selective laser melting [J]. Mater. Charact., 2022, 190: 112078
|
25 |
Wang Y, Qiu Y B, Chen Z Y, et al. Corrosion of polypyrrole: kinetics of chemical and electrochemical processes in NaOH solutions [J]. Corros. Sci., 2017, 118: 96
|
26 |
Luo H, Zou S W, Chen Y H, et al. Influence of carbon on the corrosion behaviour of interstitial equiatomic CoCrFeMnNi high-entropy alloys in a chlorinated concrete solution [J]. Corros. Sci., 2020, 163: 108287
|
27 |
Xu Z L, Zhang H, Du X J, et al. Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing [J]. Corros. Sci., 2020, 177: 108954
|
28 |
Jabs T, Borthen P, Strehblow H H. X‐ray photoelectron spectroscopic examinations of electrochemically formed passive layers on Ni‐Cr alloys [J]. J. Electrochem. Soc., 1997, 144: 1231
|
29 |
Marcus P, Grimal J M. The anodic dissolution and passivation of NiCrFe alloys studied by ESCA [J]. Corros. Sci., 1992, 33: 805
|
30 |
Zhao B Z, Zhu M, Yuan Y F, et al. Comparison of corrosion resistance of CoCrFeMnNi high entropy alloys with pipeline steels in an artificial alkaline soil solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 425
|
|
(赵宝珠, 朱 敏, 袁永锋 等. CoCrFeMnNi高熵合金和管线钢在碱性土壤环境中的耐蚀性对比研究 [J]. 中国腐蚀与防护学报, 2022, 42: 425)
doi: 10.11902/1005.4537.2021.161
|
31 |
Li Z, Wan H X, Song D D, et al. Corrosion behavior of X80 pipeline steel in the presence of Brevibacterium halotolerans in Beijing soil [J]. Bioelectrochemistry, 2019, 126: 121
|
32 |
Li D, Liang Y, Liu X X, et al. Corrosion behavior of Ti3AlC2 in NaOH and H2SO4 [J]. J. Eur. Ceram. Soc., 2010, 30: 3227
|
33 |
Tian D H, Jiao H D, Xiao J S, et al. The corrosion behavior of a Ni0.91Cr0.04Cu0.05 anode for the electroreduction of Fe2O3 in molten NaOH [J]. J. Alloy. Compd., 2018, 769: 977
|
34 |
Gao Z Y, Jiang B, Fan Z B, et al. Corrosion behavior of typical grounding materials in artificial alkaline soil solution [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 191
|
|
(高智悦, 姜 波, 樊志彬 等. 典型接地材料在碱性土壤模拟液中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 191)
doi: 10.11902/1005.4537.2022.061
|
35 |
Wu J F, Zheng X W, Li W P, et al. Copper corrosion inhibition by combined effect of inhibitor and passive film in alkaline solution [J]. Res. Chem. Intermed., 2015, 41: 8557
|
36 |
Yin Y Y, Li H X, Pan S H, et al. Electrochemical behaviour of passivation film formed on SLM-fabricated Hastelloy X superalloy surface in 10wt% NaNO3 solution [J]. Corros. Sci., 2022, 206: 110494
|
37 |
Kong D C, Dong C F, Ni X Q, et al. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes [J]. J. Mater. Sci. Technol., 2019, 35: 1499
doi: 10.1016/j.jmst.2019.03.003
|
38 |
Fattah-Alhosseini A, Golozar M A, Saatchi A, et al. Effect of solution concentration on semiconducting properties of passive films formed on austenitic stainless steels [J]. Corros. Sci., 2010, 52: 205
|
39 |
Ben Rhouma A, Amadou T, Sidhom H, et al. Correlation between microstructure and intergranular corrosion behavior of low delta-ferrite content AISI 316L aged in the range 550-700oC [J]. J. Alloy. Compd., 2017, 708: 871
|
40 |
Shang Q, Man C, Pang K, et al. Mechanism of post-heat treatment on intergranular corrosion behavior of SLM-316L stainless steel with different carbon content [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1273
|
|
(商 强, 满 成, 逄 昆 等. 后热处理对不同含碳量SLM-316L不锈钢晶间腐蚀行为的作用机制研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1273)
|
41 |
Lewis M H, Hattersley B. Precipitation of M23C6 in austenitic steels Precipitation de carbures M23C6, dans les aciers austenitiquesAusscheidung von M23C6 in austenitischen stählen [J]. Acta Metall., 1965, 13: 1159
|
42 |
Kaneko K, Fukunaga T, Yamada K, et al. Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel [J]. Scr. Mater., 2011, 65: 509
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|