|
|
Surface Modification of Corrosion-resistant Cast Iron Based on Functional Requirements of Grounding Materials |
LU Tianai, JIANG Wenhao, WU Wei, ZHANG Junxi( ) |
Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China |
|
Cite this article:
LU Tianai, JIANG Wenhao, WU Wei, ZHANG Junxi. Surface Modification of Corrosion-resistant Cast Iron Based on Functional Requirements of Grounding Materials. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1443-1453.
|
Abstract The requirements of power system for the corrosion resistance, conductivity and cost of grounding materials are increasing, so it is crucial to develop a new type of grounding materials. Herein, the cast iron was surface modified by carburization with epoxy resin as the carbon source, while controlling heating rate, holding temperature and time. The effect of heat treatment parameters on the microstructure, composition and corrosion resistance of the cast iron before and after carburization were comparatively charachterized by means of XRD, SEM, metallography, Raman spestroscopy, and electrochemical corrosion test. The results showed that there was an obvious carburization coating formed on the cast iron surface, which was mainly Fe3C, thereby the corrosion resistance of the carbuurized cast iron was significantly improved. The best carburizing parameter is to heat up from room temperature to 750oC at a rate of 5oC/min, followed by furnace cooling. The carburization treatment to certain extent process can significantly enhance the corrosion resistance and conductivity of the cast iron, which met the functional requirements of grounding materials.
|
Received: 26 January 2024
32134.14.1005.4537.2024.039
|
|
Corresponding Authors:
ZHANG Junxi, E-mail: zhangjunxi@shiep.edu.cn
|
1 |
Zhang C, Liao Y X, Gao X, et al. Research advances of soil corrosion of grounding grids [J]. Micromachines, 2021, 12: 513
|
2 |
Zhang B, He J L, Jiang Y K. Safety performance of large grounding grid with fault current injected from multiple grounding points [J]. IEEE Trans. Ind. Appl., 2015, 51: 5116
|
3 |
Hu H Z, Luo R C, Fang M G, et al. A new optimization design for grounding grid [J]. Int. J. Electr. Power Energy Syst., 2019, 108: 61
|
4 |
Zhou M, Wang J G, Liu Y, et al. Causes, forms and remedies of substation grounding grid corrosion [A]. Proceedings of the 2008 International Conference on High Voltage Engineering and Application [C]. Chongqing, China, 2008: 186
|
5 |
Bian Y F, Tang W M, Zhang J, et al. Soil corrosion characteristics of Q235 steel grounding material used in power grid in Anhui Province [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 130
|
|
(卞亚飞, 汤文明, 张 洁 等. 安徽省电网接地材料Q235钢的土壤腐蚀特性及规律性研究 [J]. 中国腐蚀与防护学报, 2024, 44: 130)
|
6 |
Barbalat M, Lanarde L, Caron D, et al. Electrochemical study of the corrosion rate of carbon steel in soil: evolution with time and determination of residual corrosion rates under cathodic protection [J]. Corros. Sci., 2012, 55: 246
|
7 |
Abdel-Salam M, Ahmed A, Nayel M, et al. Surface potential and resistance of grounding grid systems in homogeneous soil [J]. Electr. Power Compon. Syst., 2007, 35: 1093
|
8 |
Lv K C, Xu S, Liu L L, et al. Comparative study on the corrosion behaviours of high-silicon chromium iron and Q235 steel in a soil solution [J]. Int. J. Electrochem. Sci., 2020, 15: 5193
|
9 |
Datta A J, Taylor R, Will G, et al. An investigation of earth grid performance using graphene-coated copper [J]. IEEE Access, 2015, 3: 1042
|
10 |
Bertling S, Wallinder I O, Kleja D B, et al. Long-term corrosion-induced copper runoff from natural and artificial patina and its environmental impact [J]. Environ. Toxicol. Chem., 2006, 25: 891
pmid: 16566176
|
11 |
Gao Y B, Du X G, Wang Q W, et al. Corrosion behavior of copper in a simulated grounding condition in electric power grid [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 435
|
|
(高义斌, 杜晓刚, 王启伟 等. 铜在电网接地工况下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 435)
doi: 10.11902/1005.4537.2022.098
|
12 |
Guo Y B, Tan H, Wang D G, et al. Effects of alternating stray current on the corrosion behaviours of buried Q235 steel pipelines [J]. Anti-Corros. Methods Mater., 2017, 64: 599
|
13 |
Zhu Z P, Shi C, Zhang Y, et al. The effects of Cl- and direct stray current on soil corrosion of three grounding grid materials [J]. Anti-Corros. Methods Mater., 2020, 67: 73
|
14 |
Denison I A, Romanoff M. Corrosion of galvanized steel in soils [J]. J. Res. Natl. Bur. Stand., 1952, 49: 299
|
15 |
Zhang H, Yang Z, Tao D, et al. Effect of low carbon equivalent on microstructure and properties of gray cast iron [J]. Hot Work. Technol., 2023, 52(1): 52
|
|
(张 宏, 杨 忠, 陶 栋 等. 低碳当量对灰铸铁组织和性能的影响 [J]. 热加工工艺, 2023, 52(1): 52)
|
16 |
Wu D H, Wang H L, Zhang B M. Alloying of cast iron and classification of alloy cast iron [J]. Foundry Eng., 2020, 44(3): 10
|
|
(吴德海, 王怀林, 张伯明. 铸铁的合金化及合金铸铁的分类 [J]. 铸造工程, 2020, 44(3): 10)
|
17 |
Wang Y F, Xiong J, Sun L, et al. Research status in corrosion resistant cast iron under marine environment [J]. Hot Work. Technol., 2008, 37(22): 95
|
|
(王艳芬, 熊 计, 孙 兰 等. 海洋环境下耐蚀铸铁的研究现状 [J]. 热加工工艺, 2008, 37(22): 95)
|
18 |
Deng D W, Niu T T, Liu H Y, et al. Microstructure evolution and corrosion property of medium-carbon alloy steel after high-temperature carburization process [J]. Surf. Rev. Lett., 2016, 23: 1650038
|
19 |
Zhao Y C, He R F, Zhang B, et al. Research progress of ion implantation composite surface modification technology [J]. Surf. Technol., 2024, 53(5): 18
|
|
(赵燕春, 何瑞芳, 张 斌 等. 离子注渗复合表面改性技术研究进展 [J]. 表面技术, 2024, 53(5): 18)
|
20 |
Nie X H, Wang G F, Zhao J L, et al. Corrosion process and mechanism analysis of the HFW pipe in NS4 and Yingtan soil simulated solution [J]. Welded Pipe Tube, 2014, 37(7): 18
|
|
(聂向晖, 王高峰, 赵金兰 等. HFW焊管在NS4及鹰潭土壤模拟溶液中的腐蚀及机理分析 [J]. 焊管, 2014, 37(7): 18)
|
21 |
Wang Q W, Zhang J X, Gao Y, et al. Galvanic effect and alternating current corrosion of steel in acidic red soil [J]. Metals, 2022, 12: 296
|
22 |
Yang Y, Yan M F, Zhang Y X, et al. Self-lubricating and anti-corrosion amorphous carbon/Fe3C composite coating on M50NiL steel by low temperature plasma carburizing [J]. Surf. Coat. Technol., 2016, 304: 142
|
23 |
Yang G R, Song W M, Sun X M, et al. The high temperature property of Ni/WC infiltrated composite layer on cast iron substrate [J]. Adv. Mater. Res., 2010, 97-101: 1295
|
24 |
Du B S, Mi C X, Wang X, et al. Effect of austenitizing temperature on friction and wear properties of austempered ductile iron [J]. Heat Treat. Met., 2023, 48(11): 149
|
|
(杜宝帅, 米春旭, 王 鑫 等. 奥氏体化温度对等温淬火球墨铸铁摩擦磨损性能的影响 [J]. 金属热处理, 2023, 48(11): 149)
|
25 |
de Souza Lamim T, Bernardelli E A, Binder C, et al. Plasma carburizing of sintered pure iron at low temperature [J]. Mater. Res., 2015, 18: 320
|
26 |
Pradhan S K, Nayak B B, Mohapatra B K, et al. Micro raman spectroscopy and electron probe microanalysis of graphite spherulites and flakes in cast iron [J]. Metall. Mater. Trans., 2007, 38A: 2363
|
27 |
Gao M Q, Qu Y D, Li G L, et al. Cementites decomposition of a pearlitic ductile cast iron during graphitization annealing heat treatment [J]. J. Iron Steel Res. Int., 2017, 24: 838
|
28 |
Schneider A, Inden G. Carbon diffusion in cementite (Fe3C) and Hägg carbide (Fe5C2) [J]. Calphad, 2007, 31: 141
|
29 |
Cui J, Lu M K, Li H L, et al. Corrosion behavior and mechanism of vermicular graphite cast iron in neutral salt spray [J]. Surf. Technol., 2020, 49(6): 267
|
|
(崔 静, 路梦柯, 李虎林 等. 蠕墨铸铁中性盐雾腐蚀行为及机理研究 [J]. 表面技术, 2020, 49(6): 267)
|
30 |
Ku J H. Strengthening cast iron by use of rare earth elements [J]. Foreign Locomot. Rolling Stock Technol., 2010, (3): 28
|
|
(堀江皓. 使用稀土元素实现铸铁高强度化的方法 [J]. 国外机车车辆工艺, 2010, (3): 28)
|
31 |
Lan X W, Dong J H. Research on the alkali corrosion resistance property of low alloy cast iron containing rare earth [J]. Chin. Rare Earths, 2010, 31(4): 1
|
|
(兰孝文, 董俊慧. 加稀土低合金铸铁耐碱腐蚀性能研究 [J]. 稀土, 2010, 31(4): 1)
|
32 |
Gao Y W, Kong X L, Li P M, et al. Effect of discharge temperature during annealing at 750oC on microstructure and properties of QT450-10 nodular cast iron [J]. Heat Treat. Met., 2022, 47(1): 261
|
|
(高永旺, 孔祥玲, 李鹏明 等. 750℃退火出炉温度对QT450-10球墨铸铁组织与性能的影响 [J]. 金属热处理, 2022, 47(1): 261)
doi: 10.13251/j.issn.0254-6051.2022.01.043
|
33 |
Zhang H J, Chen L S. Corrosion shape and corrosion mechanism of pearlite [J]. Shanxi Metall., 2011, 34(4): 10
|
|
(张贺佳, 陈连生. 珠光体片层腐蚀形态与机理 [J]. 山西冶金, 2011, 34(4): 10)
|
34 |
Xiao Z W, Dang B. Effect of heat deformation heating temperature on microstructure evolution and hardness of GCr15SiMn cementite [J]. Intern. Combust. Engine Parts, 2022, (16): 106
|
|
(肖政旺, 党 波. 加热温度对GCr15SiMn渗碳体组织的影响 [J]. 内燃机与配件, 2022, (16): 106)
|
35 |
Ochoa N, Mardaras E, González-Martínez R, et al. Pseudo-passive films on cast irons: a strategy to mitigate corrosion by acting directly on microstructure [J]. Corros. Sci., 2022, 206: 110480
|
36 |
Yada K, Watanabe O. Reactive flow simulation of vacuum carburizing by acetylene gas [J]. Comput. Fluids, 2013, 79: 65
|
37 |
Ren Z. Research progress of metal dusting mechanisms and countermeasures [J]. Corros. Prot. Petrochem. Ind., 2021, 38(4): 1
|
|
(任 重. 金属粉化机理及应对措施的研究进展 [J]. 石油化工腐蚀与防护, 2021, 38(4): 1)
|
38 |
Ni H W, Cang D Q, Jiang J P. Effect of reaction temperature and gas composition on formation of iron carbide [J]. Res. Iron Steel, 1999, 27(6): 22
|
|
(倪红卫, 苍大强, 姜钧普. 反应温度、气氛对碳化铁制备过程的影响 [J]. 钢铁研究, 1999, 27(6): 22)
|
39 |
Li Q C, Lin D S, Yang X P, et al. In situ observation of graphitization of cementite in ductile cast iron during heating [J]. Trans. Mater. Heat Treat., 2011, 32(10): 80
|
|
(李青春, 林大帅, 杨晓平 等. 球墨铸铁加热过程中渗碳体石墨化的原位观察 [J]. 材料热处理学报, 2011, 32(10): 80)
|
40 |
Dai Y, Wu X, Yang F, et al. Corrosion and wear properties of carburized layer on TC6 titanium alloy in different environments [J]. China Surf. Eng., 2020, 33(2): 47
|
|
(代 燕, 吴 旋, 杨 峰 等. TC6钛合金渗碳层在不同介质环境中的腐蚀磨损性能 [J]. 中国表面工程, 2020, 33(2): 47)
|
41 |
Li M C, Lin H C, Cao C N. Study on soil corrosion of carbon steel by Electrochemical impedance spectroscopy (EIS) [J]. J. Chin. Soc. Corros. Prot., 2000, 20: 111
|
|
(李谋成, 林海潮, 曹楚南. 碳钢在土壤中腐蚀的电化学阻抗谱特征 [J]. 中国腐蚀与防护学报, 2000, 20: 111)
|
42 |
Oliveira V M C A, Aguiar C, Vazquez A M, et al. Improving corrosion resistance of Ti-6Al-4V alloy through plasma-assisted PVD deposited nitride coatings [J]. Corros. Sci., 2014, 88: 317
|
43 |
Che M J, Zhou S X, Du X J, et al. Influence of tempering temperature on corrosion resistance of EH890 marine engineering steel [J]. Heat Treat. Met., 2022, 47(10): 147
doi: 10.13251/j.issn.0254-6051.2022.10.024
|
|
(车马俊, 周生璇, 杜晓洁 等. 回火温度对EH890海洋工程用钢耐蚀性能的影响 [J]. 金属热处理, 2022, 47(10): 147)
doi: 10.13251/j.issn.0254-6051.2022.10.024
|
44 |
Gao Z Y, Jiang B, Fan Z B, et al. Corrosion behavior of typical grounding materials in artificial alkaline soil solution [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 191
|
|
(高智悦, 姜 波, 樊志彬 等. 典型接地材料在碱性土壤模拟液中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 191)
doi: 10.11902/1005.4537.2022.061
|
45 |
Siriwardane H, Pringle O A, Newkirk J W, et al. Microstructure and physical properties of iron carbide films formed by plasma enhanced chemical vapor deposition [J]. Thin Solid Films, 1996, 287: 8
|
46 |
Kuang D, Cheng Y F. Understand the AC induced pitting corrosion on pipelines in both high pH and neutral pH carbonate/bicarbonate solutions [J]. Corros. Sci., 2014, 85: 304
|
47 |
Qiao C, Shen L F, Hao L, et al. Corrosion kinetics and patina evolution of galvanized steel in a simulated coastal-industrial atmosphere [J]. J. Mater. Sci. Technol., 2019, 35: 2345
doi: 10.1016/j.jmst.2019.05.039
|
48 |
Zhang Z L, Zou J, Dan Y H, et al. Analysis the influence of corrosion layer on the grounding performance of grounding electrodes [J]. IET Gener. Transm. Distrib., 2020, 14: 2602
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|