Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (6): 1443-1453    DOI: 10.11902/1005.4537.2024.039
Current Issue | Archive | Adv Search |
Surface Modification of Corrosion-resistant Cast Iron Based on Functional Requirements of Grounding Materials
LU Tianai, JIANG Wenhao, WU Wei, ZHANG Junxi()
Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
Cite this article: 

LU Tianai, JIANG Wenhao, WU Wei, ZHANG Junxi. Surface Modification of Corrosion-resistant Cast Iron Based on Functional Requirements of Grounding Materials. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1443-1453.

Download:  HTML  PDF(22381KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The requirements of power system for the corrosion resistance, conductivity and cost of grounding materials are increasing, so it is crucial to develop a new type of grounding materials. Herein, the cast iron was surface modified by carburization with epoxy resin as the carbon source, while controlling heating rate, holding temperature and time. The effect of heat treatment parameters on the microstructure, composition and corrosion resistance of the cast iron before and after carburization were comparatively charachterized by means of XRD, SEM, metallography, Raman spestroscopy, and electrochemical corrosion test. The results showed that there was an obvious carburization coating formed on the cast iron surface, which was mainly Fe3C, thereby the corrosion resistance of the carbuurized cast iron was significantly improved. The best carburizing parameter is to heat up from room temperature to 750oC at a rate of 5oC/min, followed by furnace cooling. The carburization treatment to certain extent process can significantly enhance the corrosion resistance and conductivity of the cast iron, which met the functional requirements of grounding materials.

Key words:  grounding net      cast iron      carburizing      corrosion resistance      electrochemical measurement     
Received:  26 January 2024      32134.14.1005.4537.2024.039
ZTFLH:  TG172  
Corresponding Authors:  ZHANG Junxi, E-mail: zhangjunxi@shiep.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.039     OR     https://www.jcscp.org/EN/Y2024/V44/I6/1443

Fig.1  Surface and cross-sectional micro-morphologies of the cast iron carburized at 750oC (a-c), 800oC (d-f) and 900oC (g-i) for 0 h (a, d, g), 0.5 h (b, e, h) and 1 h (c, f, i)
Fig.2  XRD patterns (a) and Raman spectroscopies (b) of carburized layers formed on the cast iron under different carburizing conditions
Fig.3  Microstructures of graphite (a) and cementite (b) of original cast iron
Fig.4  Morphologies of graphite in cast iron substrate carburized at 750oC (a-c), 800oC (d-f) and 900oC (g-i) for 0 h (a, d, g), 0.5 h (b, e, h) and 1 h (c, f, i)
Fig.5  Morphologies of cementite in cast iron substrate carburized at 750℃ (a-c), 800oC (d-f) and 900oC (g-i) for 0 h (a, d, g), 0.5 h (b, e, h) and 1 h (c, f, i)
Fig.6  Schematic diagrams of carburizing process via heating epoxy resin
Fig.7  Polarization curves (a) and fitting corrosion rates (b) of cast iron samples untreated and carburized under different conditions in NS4 simulated soil solution
Fig.8  Electrochemical polarization curves (a) and fitting corrosion rates (b) of cast iron samples untreated and carburized at 750oC for 0h after immersion in NS4 simulated soil solution for different time
Fig.9  EIS curves of cast iron samples untreated (a-c) and carburized (d-f) at 750oC for 0 h after immersion in NS4 simulated soil solution for different time
Time / dUntreatedCarburized cast iron
Rs / Ω∙cm2Rf / Ω∙cm2Rct / Ω∙cm2Rs / Ω∙cm2Rf / Ω∙cm2Rct / Ω∙cm2
7516.3410.8642.8455.9390.76142
14462.1405928.5365.7385.27175
21530.8437.5732.2417.5358.47382
28306.9309.4898.5447409.77593
35397.2268428.8381.85376.26928
Table 1  Fitting electrochemical parameters of EIS curves shown in Fig.9
Fig.10  Cross-sectional morphologies of cast iron samples untreated (a) and carburized (b) at 750oC for 0 h after immersion in NS4 simulated soil solution for 35 d
Fig.11  Polarization curves (a) and corresponding corrosion rates (b) of untreated and 750oC/0 h carburized cast iron and galvanized steel in NS4 soil simulated solution at different AC current intensities
1 Zhang C, Liao Y X, Gao X, et al. Research advances of soil corrosion of grounding grids [J]. Micromachines, 2021, 12: 513
2 Zhang B, He J L, Jiang Y K. Safety performance of large grounding grid with fault current injected from multiple grounding points [J]. IEEE Trans. Ind. Appl., 2015, 51: 5116
3 Hu H Z, Luo R C, Fang M G, et al. A new optimization design for grounding grid [J]. Int. J. Electr. Power Energy Syst., 2019, 108: 61
4 Zhou M, Wang J G, Liu Y, et al. Causes, forms and remedies of substation grounding grid corrosion [A]. Proceedings of the 2008 International Conference on High Voltage Engineering and Application [C]. Chongqing, China, 2008: 186
5 Bian Y F, Tang W M, Zhang J, et al. Soil corrosion characteristics of Q235 steel grounding material used in power grid in Anhui Province [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 130
(卞亚飞, 汤文明, 张 洁 等. 安徽省电网接地材料Q235钢的土壤腐蚀特性及规律性研究 [J]. 中国腐蚀与防护学报, 2024, 44: 130)
6 Barbalat M, Lanarde L, Caron D, et al. Electrochemical study of the corrosion rate of carbon steel in soil: evolution with time and determination of residual corrosion rates under cathodic protection [J]. Corros. Sci., 2012, 55: 246
7 Abdel-Salam M, Ahmed A, Nayel M, et al. Surface potential and resistance of grounding grid systems in homogeneous soil [J]. Electr. Power Compon. Syst., 2007, 35: 1093
8 Lv K C, Xu S, Liu L L, et al. Comparative study on the corrosion behaviours of high-silicon chromium iron and Q235 steel in a soil solution [J]. Int. J. Electrochem. Sci., 2020, 15: 5193
9 Datta A J, Taylor R, Will G, et al. An investigation of earth grid performance using graphene-coated copper [J]. IEEE Access, 2015, 3: 1042
10 Bertling S, Wallinder I O, Kleja D B, et al. Long-term corrosion-induced copper runoff from natural and artificial patina and its environmental impact [J]. Environ. Toxicol. Chem., 2006, 25: 891
pmid: 16566176
11 Gao Y B, Du X G, Wang Q W, et al. Corrosion behavior of copper in a simulated grounding condition in electric power grid [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 435
(高义斌, 杜晓刚, 王启伟 等. 铜在电网接地工况下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 435)
doi: 10.11902/1005.4537.2022.098
12 Guo Y B, Tan H, Wang D G, et al. Effects of alternating stray current on the corrosion behaviours of buried Q235 steel pipelines [J]. Anti-Corros. Methods Mater., 2017, 64: 599
13 Zhu Z P, Shi C, Zhang Y, et al. The effects of Cl- and direct stray current on soil corrosion of three grounding grid materials [J]. Anti-Corros. Methods Mater., 2020, 67: 73
14 Denison I A, Romanoff M. Corrosion of galvanized steel in soils [J]. J. Res. Natl. Bur. Stand., 1952, 49: 299
15 Zhang H, Yang Z, Tao D, et al. Effect of low carbon equivalent on microstructure and properties of gray cast iron [J]. Hot Work. Technol., 2023, 52(1): 52
(张 宏, 杨 忠, 陶 栋 等. 低碳当量对灰铸铁组织和性能的影响 [J]. 热加工工艺, 2023, 52(1): 52)
16 Wu D H, Wang H L, Zhang B M. Alloying of cast iron and classification of alloy cast iron [J]. Foundry Eng., 2020, 44(3): 10
(吴德海, 王怀林, 张伯明. 铸铁的合金化及合金铸铁的分类 [J]. 铸造工程, 2020, 44(3): 10)
17 Wang Y F, Xiong J, Sun L, et al. Research status in corrosion resistant cast iron under marine environment [J]. Hot Work. Technol., 2008, 37(22): 95
(王艳芬, 熊 计, 孙 兰 等. 海洋环境下耐蚀铸铁的研究现状 [J]. 热加工工艺, 2008, 37(22): 95)
18 Deng D W, Niu T T, Liu H Y, et al. Microstructure evolution and corrosion property of medium-carbon alloy steel after high-temperature carburization process [J]. Surf. Rev. Lett., 2016, 23: 1650038
19 Zhao Y C, He R F, Zhang B, et al. Research progress of ion implantation composite surface modification technology [J]. Surf. Technol., 2024, 53(5): 18
(赵燕春, 何瑞芳, 张 斌 等. 离子注渗复合表面改性技术研究进展 [J]. 表面技术, 2024, 53(5): 18)
20 Nie X H, Wang G F, Zhao J L, et al. Corrosion process and mechanism analysis of the HFW pipe in NS4 and Yingtan soil simulated solution [J]. Welded Pipe Tube, 2014, 37(7): 18
(聂向晖, 王高峰, 赵金兰 等. HFW焊管在NS4及鹰潭土壤模拟溶液中的腐蚀及机理分析 [J]. 焊管, 2014, 37(7): 18)
21 Wang Q W, Zhang J X, Gao Y, et al. Galvanic effect and alternating current corrosion of steel in acidic red soil [J]. Metals, 2022, 12: 296
22 Yang Y, Yan M F, Zhang Y X, et al. Self-lubricating and anti-corrosion amorphous carbon/Fe3C composite coating on M50NiL steel by low temperature plasma carburizing [J]. Surf. Coat. Technol., 2016, 304: 142
23 Yang G R, Song W M, Sun X M, et al. The high temperature property of Ni/WC infiltrated composite layer on cast iron substrate [J]. Adv. Mater. Res., 2010, 97-101: 1295
24 Du B S, Mi C X, Wang X, et al. Effect of austenitizing temperature on friction and wear properties of austempered ductile iron [J]. Heat Treat. Met., 2023, 48(11): 149
(杜宝帅, 米春旭, 王 鑫 等. 奥氏体化温度对等温淬火球墨铸铁摩擦磨损性能的影响 [J]. 金属热处理, 2023, 48(11): 149)
25 de Souza Lamim T, Bernardelli E A, Binder C, et al. Plasma carburizing of sintered pure iron at low temperature [J]. Mater. Res., 2015, 18: 320
26 Pradhan S K, Nayak B B, Mohapatra B K, et al. Micro raman spectroscopy and electron probe microanalysis of graphite spherulites and flakes in cast iron [J]. Metall. Mater. Trans., 2007, 38A: 2363
27 Gao M Q, Qu Y D, Li G L, et al. Cementites decomposition of a pearlitic ductile cast iron during graphitization annealing heat treatment [J]. J. Iron Steel Res. Int., 2017, 24: 838
28 Schneider A, Inden G. Carbon diffusion in cementite (Fe3C) and Hägg carbide (Fe5C2) [J]. Calphad, 2007, 31: 141
29 Cui J, Lu M K, Li H L, et al. Corrosion behavior and mechanism of vermicular graphite cast iron in neutral salt spray [J]. Surf. Technol., 2020, 49(6): 267
(崔 静, 路梦柯, 李虎林 等. 蠕墨铸铁中性盐雾腐蚀行为及机理研究 [J]. 表面技术, 2020, 49(6): 267)
30 Ku J H. Strengthening cast iron by use of rare earth elements [J]. Foreign Locomot. Rolling Stock Technol., 2010, (3): 28
(堀江皓. 使用稀土元素实现铸铁高强度化的方法 [J]. 国外机车车辆工艺, 2010, (3): 28)
31 Lan X W, Dong J H. Research on the alkali corrosion resistance property of low alloy cast iron containing rare earth [J]. Chin. Rare Earths, 2010, 31(4): 1
(兰孝文, 董俊慧. 加稀土低合金铸铁耐碱腐蚀性能研究 [J]. 稀土, 2010, 31(4): 1)
32 Gao Y W, Kong X L, Li P M, et al. Effect of discharge temperature during annealing at 750oC on microstructure and properties of QT450-10 nodular cast iron [J]. Heat Treat. Met., 2022, 47(1): 261
(高永旺, 孔祥玲, 李鹏明 等. 750℃退火出炉温度对QT450-10球墨铸铁组织与性能的影响 [J]. 金属热处理, 2022, 47(1): 261)
doi: 10.13251/j.issn.0254-6051.2022.01.043
33 Zhang H J, Chen L S. Corrosion shape and corrosion mechanism of pearlite [J]. Shanxi Metall., 2011, 34(4): 10
(张贺佳, 陈连生. 珠光体片层腐蚀形态与机理 [J]. 山西冶金, 2011, 34(4): 10)
34 Xiao Z W, Dang B. Effect of heat deformation heating temperature on microstructure evolution and hardness of GCr15SiMn cementite [J]. Intern. Combust. Engine Parts, 2022, (16): 106
(肖政旺, 党 波. 加热温度对GCr15SiMn渗碳体组织的影响 [J]. 内燃机与配件, 2022, (16): 106)
35 Ochoa N, Mardaras E, González-Martínez R, et al. Pseudo-passive films on cast irons: a strategy to mitigate corrosion by acting directly on microstructure [J]. Corros. Sci., 2022, 206: 110480
36 Yada K, Watanabe O. Reactive flow simulation of vacuum carburizing by acetylene gas [J]. Comput. Fluids, 2013, 79: 65
37 Ren Z. Research progress of metal dusting mechanisms and countermeasures [J]. Corros. Prot. Petrochem. Ind., 2021, 38(4): 1
(任 重. 金属粉化机理及应对措施的研究进展 [J]. 石油化工腐蚀与防护, 2021, 38(4): 1)
38 Ni H W, Cang D Q, Jiang J P. Effect of reaction temperature and gas composition on formation of iron carbide [J]. Res. Iron Steel, 1999, 27(6): 22
(倪红卫, 苍大强, 姜钧普. 反应温度、气氛对碳化铁制备过程的影响 [J]. 钢铁研究, 1999, 27(6): 22)
39 Li Q C, Lin D S, Yang X P, et al. In situ observation of graphitization of cementite in ductile cast iron during heating [J]. Trans. Mater. Heat Treat., 2011, 32(10): 80
(李青春, 林大帅, 杨晓平 等. 球墨铸铁加热过程中渗碳体石墨化的原位观察 [J]. 材料热处理学报, 2011, 32(10): 80)
40 Dai Y, Wu X, Yang F, et al. Corrosion and wear properties of carburized layer on TC6 titanium alloy in different environments [J]. China Surf. Eng., 2020, 33(2): 47
(代 燕, 吴 旋, 杨 峰 等. TC6钛合金渗碳层在不同介质环境中的腐蚀磨损性能 [J]. 中国表面工程, 2020, 33(2): 47)
41 Li M C, Lin H C, Cao C N. Study on soil corrosion of carbon steel by Electrochemical impedance spectroscopy (EIS) [J]. J. Chin. Soc. Corros. Prot., 2000, 20: 111
(李谋成, 林海潮, 曹楚南. 碳钢在土壤中腐蚀的电化学阻抗谱特征 [J]. 中国腐蚀与防护学报, 2000, 20: 111)
42 Oliveira V M C A, Aguiar C, Vazquez A M, et al. Improving corrosion resistance of Ti-6Al-4V alloy through plasma-assisted PVD deposited nitride coatings [J]. Corros. Sci., 2014, 88: 317
43 Che M J, Zhou S X, Du X J, et al. Influence of tempering temperature on corrosion resistance of EH890 marine engineering steel [J]. Heat Treat. Met., 2022, 47(10): 147
doi: 10.13251/j.issn.0254-6051.2022.10.024
(车马俊, 周生璇, 杜晓洁 等. 回火温度对EH890海洋工程用钢耐蚀性能的影响 [J]. 金属热处理, 2022, 47(10): 147)
doi: 10.13251/j.issn.0254-6051.2022.10.024
44 Gao Z Y, Jiang B, Fan Z B, et al. Corrosion behavior of typical grounding materials in artificial alkaline soil solution [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 191
(高智悦, 姜 波, 樊志彬 等. 典型接地材料在碱性土壤模拟液中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 191)
doi: 10.11902/1005.4537.2022.061
45 Siriwardane H, Pringle O A, Newkirk J W, et al. Microstructure and physical properties of iron carbide films formed by plasma enhanced chemical vapor deposition [J]. Thin Solid Films, 1996, 287: 8
46 Kuang D, Cheng Y F. Understand the AC induced pitting corrosion on pipelines in both high pH and neutral pH carbonate/bicarbonate solutions [J]. Corros. Sci., 2014, 85: 304
47 Qiao C, Shen L F, Hao L, et al. Corrosion kinetics and patina evolution of galvanized steel in a simulated coastal-industrial atmosphere [J]. J. Mater. Sci. Technol., 2019, 35: 2345
doi: 10.1016/j.jmst.2019.05.039
48 Zhang Z L, Zou J, Dan Y H, et al. Analysis the influence of corrosion layer on the grounding performance of grounding electrodes [J]. IET Gener. Transm. Distrib., 2020, 14: 2602
[1] WEI Kezheng, JIANG Wenlong, GONG Yiwei, QIU Xin, DING Hanlin, XIANG Chongchen, WANG Zijian. Effect of Aging Time on Precipitation of Second Phase and Corrosion Performance of Prismatic Plane of As-forged AZ80 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(6): 1557-1565.
[2] YI Shuo, ZHOU Shengxuan, YE Peng, DU Xiaojie, XU Zhenlin, HE Yizhu. Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[3] MA Jinyao, DONG Nan, GUO Zhensen, HAN Peide. Effect of B and Ce Micro-alloying on Secondary Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[4] CHENG Yonghe, FU Junwei, ZHAO Maomi, SHEN Yunjun. Research Progress on Corrosion Resistance of High-entropy Alloys[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[5] LYU Xiaoming, WANG Zhenyu, HAN En-Hou. Preparation and Corrosion Resistance of Nano-ZrO2 Modified Epoxy Thermal Insulation Coatings[J]. 中国腐蚀与防护学报, 2024, 44(5): 1234-1242.
[6] MA Xiaowei, XUE Rongjie, WANG Taotao, YANG Liang, LIU Zhenguang. Comparison of Corrosion Resistance of Zr-based Amorphous Alloys and Traditional Alloys in Seawater[J]. 中国腐蚀与防护学报, 2024, 44(4): 949-956.
[7] TIAN Mengzhen, WANG Yong, LI Tao, WANG Chuan, GUO Quanzhong, GUO Jianxi. Effect of Electrical Parameters on Energy Consumption and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 1064-1072.
[8] LIN Yi, LIU Tao, GUO Yanbing, RUAN Qing, GUO Zhangwei, DONG Lihua. Research and Development of Welding Materials For Low-temperature Steel and Corrosion Evaluation Methods[J]. 中国腐蚀与防护学报, 2024, 44(4): 957-964.
[9] HE Jiaxuan, ZHANG Yutong, GUAN Xudong, TANG Jianhua, HUANG Hai, ZHAO Xuhui, TANG Yuming, ZUO Yu. Present Status and Progress of Corrosion Protection for Microchannel Heat Exchangers of Al-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 993-1000.
[10] GENG Zhenzhen, ZHANG Yuzhu, DU Xiaojiang, WU Hanhui. Synergistic Effect of S2- and Cl- on Corrosion and Passivation Behavior of 316L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[11] LONG Wujian, TANG Jie, LUO Qiling, QIU Zhanghong, WANG Hailong. Corrosion Inhibition Performance of Biomass-derived Carbon Dots on Q235 Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 807-814.
[12] SHI Chao, LI Jiahao, WANG Rongxiang, ZHANG Bo, ZHOU Lanxin, LIU Guangming, SHAO Yawei. Effect of Different Bias Voltages on Anti-corrosion Properties of Multi-arc Ion Plated Al-coatings on 45# Carbon Steel[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
[13] XIE Yun, LIU Ting, WANG Wen, ZHOU Jialin, TANG Song. Effect of Microstructure on Corrosion Resistance of a High-strength Ultralightweight Mg-Li Alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[14] SUN Shuo, DAI Jiaming, SONG Yingwei, AI Caijiao. Corrosion Behavior of Extruded EW75 Mg-alloy in Shenyang Industrial Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[15] LIU Guoqiang, ZHANG Dongfang, CHEN Haoxiang, FAN Zhihong, XIONG Jianbo, WU Qingfa. Electrochemical Corrosion Behavior of 2304 Duplex Stainless Steel in a Simulated Pore Solution in Reinforced Concrete Serving in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 204-212.
No Suggested Reading articles found!