Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (6): 1601-1609    DOI: 10.11902/1005.4537.2024.017
Current Issue | Archive | Adv Search |
Prediction Method for Reinforced Concrete Corrosion-induced Crack Based on Stacking Integrated Model Fusion
LIANG Zihao1,2,3, YING Zongquan1,2,3, LIU Meimei1,2,3(), YANG Shuai1,2,3
1. CCCC Fourth Harbor Engineering Institute Co., Ltd., Guangzhou 510230, China
2. Key Laboratory of Construction Materials, CCCC, Guangzhou 510230, China
3. Key Laboratory of Harbor & Marine Structure Durability Technology, Ministry of Transport, Guangzhou 510230, China
Cite this article: 

LIANG Zihao, YING Zongquan, LIU Meimei, YANG Shuai. Prediction Method for Reinforced Concrete Corrosion-induced Crack Based on Stacking Integrated Model Fusion. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1601-1609.

Download:  HTML  PDF(3787KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In predicting corrosion-induced cracking of reinforced concrete, traditional empirical formulas used are varied with limited precision of prediction. To address these limitations, this paper presents a method based on the stacking of models to predict the cracking of reinforced concrete due to corrosion induced expansion. Firstly, 223 sets of test data on the cracking of reinforced concrete due to corrosion induced expansion were collected from published articles and processed in advance. Next, Bayesian optimization of hyperparameters, model training, and evaluation were conducted separately based on Support Vector Regression (SVR), Random Forest (RF), and Extreme Gradient Boosting (XGBoost) algorithms. Determination coefficient (R2), mean absolute error (MAE), and root mean square error (RMSE) were utilized for a comparative analysis of the prediction performances of three machine learning models. On this basis, a prediction model integrating multiple algorithms with the Stacking method was proposed. Finally, the generalization performances of the proposed prediction model and traditional empirical formula models were verified, and the XGBoost model was employed to analyze the interpretability of the proposed model. As revealed in the results, the proposed model has better prediction accuracy and generalization performance than other machine learning models. The interpretability analysis result demonstrates that the prediction of the proposed model logic matches the practical engineering experience. This finding is conducive to improve the prediction accuracy of thecorrosion-induced cracking of reinforced concrete, and can provide scientific theoretical guidance for decision-makers in practical engineering.

Key words:  reinforced concrete      corrosion-induced cracking      machine learing      stacking algorithm      XGBoost algorithm      interpretability analysis     
Received:  12 January 2024      32134.14.1005.4537.2024.017
ZTFLH:  TU375  
Fund: National Key R&D Program of China(2022YFB2603000)
Corresponding Authors:  LIU Meimei, E-mail: lmeimei@cccc4.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.017     OR     https://www.jcscp.org/EN/Y2024/V44/I6/1601

Fig.1  Model input and output feature data statistics: (a) concrete strength, (b) protection thickness, (c) crack width, (d) reinforcement diameters, (e) corrosion rate
Fig.2  Heat map for correlation analysis
Fig.3  Stacking integrated modeling framework
ArithmeticHyperparameterizationOptimal parameter valuesR2RMSE/%MAE/%
Stacking//0.9061.170.88
XGBoostn_estimator2220.8831.310.95
max_depth9
gamma3
learning_rate0.3
RFmax_depth90.8371.551.09
min_samples_split2
min_sample_leaf1
n_estimators125
SVRC320.7731.831.46
Gamma1
Table 1  Comparison of prediction results of machine learning models
Fig.4  Standardized Taylor diagram
Traditional empirical formulasCalculation formula
Model one[5]β=1d32.43+0.303fcu+0.65c+27.45w
Model two[27]β=94.82×1.018cfcu0.248d-1.588
Model three[38]w=4.5045δ+0.04955, β=1-1-2δd2×100%
Table 2  Three traditional empirical formulas
Fig.5  Predicted values, experimental values and absolute errors obtained by machine learning and traditional empirical formula models: (a) Stacking, (b) XGBoost, (c) RF, (d) Model one[5], (e) Model two[27], (f) Model three[38]
ModelMAE / %RMSE / %
Stacking0.881.17
XGBoost0.951.31
RF1.091.55
Model one[5]3.114.18
Model two[27]3.364.59
Model three[38]4.855.57
Table 3  Comparison of errors of machine learning and empirical formula models
Fig.6  Comparison of generalization performance validations of various models
Fig.7  Single-feature dependency graph
1 Bai Y L, Jin W L, Yu Y F, et al. Reliability analysis of damaged concrete beams based on the rust crack width [J]. J. Civ. Environ. Eng., 2023: 1-8, doi: 10.11835/j.issn.2096-6717.2023.076
(柏玉良, 金伟良, 余一凡 等. 基于锈胀裂缝宽度的损伤混凝土梁可靠度分析 [J]. 土木与环境工程学报(中英文), 2023: 1-8, doi: 10.11835/j.issn.2096-6717.2023.076
2 Jin W L, Zhao Y X. Durability of Concrete Structures [M]. 2nd ed. Beijing: Science Press, 2014: 1
(金伟良, 赵羽习. 混凝土结构耐久性 [M]. 2版. 北京: 科学出版社, 2014: 1)
3 Zhang Y, Jiang L X. A practical mathematical model of concrete carbonation depth based on the mechanism [J]. Ind. Constr., 1998, 28: 16
(张 誉, 蒋利学. 基于碳化机理的混凝土碳化深度实用数学模型 [J]. 工业建筑, 1998, 28: 16)
4 Parrott L J. A study of carbonation-induced corrosion [J]. Mag. Concrete Res., 1994, 46: 23
5 Hui Y L. Assessment and predicted experimental study on corrosive degree of reinforcements in concrete structures [J]. Ind. Constr., 1997, 27(6): 6
(惠云玲. 混凝土结构中钢筋锈蚀程度评估和预测试验研究 [J]. 工业建筑, 1997, 27(6): 6)
6 Di X T, Zhou Y. Inspection and Maintenance of Old Buildings [M]. Beijing: Seismological Press, 1992: 78
(邸小坛, 周 燕. 旧建筑物的检测加固与维护 [M]. 北京: 地震出版社, 1992: 78)
7 Wang S. Research and durability assessment of rust expansion cracks in reinforced concrete structures [D]. Shanghai: Tongji University, 2000
(王 深. 钢筋混凝土结构锈胀裂缝的研究及耐久性评估 [D]. 上海: 同济大学, 2000)
8 Tong L X. Research on the damage of concrete and the influence for the longitudinal reinforcement corrosion by stirrup corrosion [D]. Xi’an: Xi’an University of Architecture and Technology, 2013
(同立向. 箍筋锈蚀引起的混凝土保护层损伤及对纵筋锈蚀的影响研究 [D]. 西安: 西安建筑科技大学, 2013)
9 Zhang W G, Tang L B, Chen F Y, et al. Prediction for TBM penetration rate using four hyperparameter optimization methods and random forest model [J]. J. Basic Sci. Eng., 2021, 29: 1186
(仉文岗, 唐理斌, 陈福勇 等. 基于4种超参数优化算法及随机森林模型预测TBM掘进速度 [J]. 应用基础与工程科学学报, 2021, 29: 1186)
10 Wang S S, Ma S J, Che K, et al. Application status of machine learning in field of natural environment corrosion assessment and prediction [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 441
(王莎莎, 马帅杰, 车 琨 等. 机器学习在自然环境腐蚀评估与预测领域的应用现状 [J]. 中国腐蚀与防护学报, 2023, 43: 441)
doi: 10.11902/1005.4537.2022.147
11 Yao Y, Liu G J, Li S Z, et al. Research progress on corrosion prediction model of metallic materials for electrical equipment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 983
(姚 勇, 刘国军, 黎石竹 等. 金属材料腐蚀预测模型研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 983)
12 Liu X, Wang S M, Lu L, et al. Development on machine learning for durability prediction of concrete materials [J]. J. Chin. Ceram. Soc., 2023, 51: 2062
(刘 晓, 王思迈, 卢 磊 等. 机器学习预测混凝土材料耐久性的研究进展 [J]. 硅酸盐学报, 2023, 51: 2062)
13 Liu Y, Zou X X, Yang Z W, et al. Machine learning embedded with materials domain knowledge [J]. J. Chin. Ceram. Soc., 2022, 50: 863
(刘 悦, 邹欣欣, 杨正伟 等. 材料领域知识嵌入的机器学习 [J]. 硅酸盐学报, 2022, 50: 863)
14 Xu X H, Hu Z L, Liu J P, et al. Concrete strength prediction of the three gorges dam based on machine learning regression model [J]. Mater. Rep., 2023, 37(2): 45
(徐潇航, 胡张莉, 刘加平 等. 基于机器学习回归模型的三峡大坝混凝土强度预测 [J]. 材料导报, 2023, 37(2): 45)
15 Bai T, Luo X B, Xing G H. Prediction of abrasion resistance of pervious concrete based on machine learning [J]. Bull. Chin. Ceram. Soc., 2024, 43: 138
(白 涛, 罗小宝, 邢国华. 基于机器学习的透水混凝土耐磨性能预测 [J]. 硅酸盐通报, 2024, 43: 138)
16 Liu K H, Dai Z H, Zhang R B, et al. Prediction of the sulfate resistance for recycled aggregate concrete based on ensemble learning algorithms [J]. Constr. Build. Mater., 2022, 317: 125917
17 Li Z J, Qi J N, Hu Y Q, et al. Estimation of bond strength between UHPC and reinforcing bars using machine learning approaches [J]. Eng. Struct., 2022, 262: 114311
18 Huang T, Liu T B, Ai Y, et al. Modelling the interface bond strength of corroded reinforced concrete using hybrid machine learning algorithms [J]. J. Build. Eng., 2023, 74: 106862
19 Hu Y C, Liang M, Xie C R, et al. Strength prediction method of high performance concrete based on stacking model fusion [J]. Bull. Chin. Ceram. Soc., 2023, 42: 3914
(胡以婵, 梁 铭, 谢灿荣 等. 基于Stacking模型融合的高性能混凝土强度预测方法 [J]. 硅酸盐通报, 2023, 42: 3914)
20 Zhong X P, Peng L G, Yuan C B, et al. Experimental research on compressive strength of concrete damaged by coupling of chlorine-corrosion [J]. Ind. Constr., 2020, 50(12): 69
(钟小平, 彭蓝鸽, 袁承斌 等. 氯盐-锈蚀耦合损伤混凝土抗压强度试验 [J]. 工业建筑, 2020, 50(12): 69)
21 Xiao D, Zhao T Y, Di Z Y. Effect of protective layer on crack of corroded reinforced concrete beam [J]. J. Univ. Sci. Technol. Liaoning, 2015, 38: 306
(肖 丹, 赵天宇, 邸振禹. 保护层对锈蚀钢筋混凝土梁裂缝的影响 [J]. 辽宁科技大学学报, 2015, 38: 306)
22 Yang X M, Yang Z B, Yang L. Relationship between corrosion rate and width of corrosion cracks in corner of concrete components with different depth of cover [J]. Bull. Chin. Ceram. Soc., 2019, 38: 3332
(杨晓明, 杨治邦, 杨 亮. 基于不同保护层厚度下混凝土构件角区锈胀裂缝宽度与钢筋锈蚀率的关系研究 [J]. 硅酸盐通报, 2019, 38: 3332)
23 Yang X M, Yang Z B, Yang L. Study on the relationship between total width of corrosion cracks in the corner of corroded reinforcement corrosion components and corrosion rate [J]. Bull. Chin. Ceram. Soc., 2018, 37: 3807
(杨晓明, 杨治邦, 杨 亮. 锈蚀钢筋混凝土构件角部锈胀裂缝总宽度与钢筋锈蚀率之间的关系研究 [J]. 硅酸盐通报, 2018, 37: 3807)
24 Wu W. Research on concrete reinforcement corrosion process and test [D]. Wuhan: Hubei University of Technology, 2012
(吴 伟. 混凝土钢筋锈蚀过程及试验研究 [D]. 武汉: 湖北工业大学, 2012)
25 Li Y. Study on time-varying properties of load bearing-corroded reinforced concrete structures [D]. Yangzhou: Yangzhou University, 2018
(李 叶. 持载锈蚀钢筋混凝土结构时变性能研究 [D]. 扬州: 扬州大学, 2018)
26 Peng J X, Hu S W, Zhang J R, et al. Experimental study and prediction model of corrosion-induced crack width in RC structure [J]. J. Exp. Mech., 2014, 29: 33
(彭建新, 胡守旺, 张建仁 等. 钢筋混凝土结构锈胀开裂宽度的试验研究及预测模型 [J]. 实验力学, 2014, 29: 33)
27 Li H B, Yang F, Zhao Y X, et al. Model of corroded expansion force at cracking on reinforced concrete structures [J]. J. Zhejiang Univ. (Eng. Sci.), 2000, 34(4): 67
(李海波, 鄢 飞, 赵羽习 等. 钢筋混凝土结构开裂时刻的钢筋锈胀力模型 [J]. 浙江大学学报(工学版), 2000, 34(4): 67)
28 Yuan L Q. The investigation and analysis of corroded and cracked reinforced concrete [D]. Xi’an: Xi’an University of Architecture and Technology, 2007
(袁立群. 混凝土结构锈胀裂缝分析与钢筋锈蚀预测研究 [D]. 西安: 西安建筑科技大学, 2007)
29 Patro S G K, Sahu K K. Normalization: A preprocessing stage [Z]. arXiv preprint arXiv: 1503.06462, 2015
30 Benesty J, Chen J D, Huang Y, et al. Pearson correlation coefficient [A]. CohenI, HuangYT, ChenJD, et al. Noise Reduction in Speech Processing [M]. Berlin: Springer, 2009: 1
31 Cortes C, Vapnik V. Support-vector networks [J]. Mach. Learn., 1995, 20: 273
32 Breiman L. Random forests [J]. Mach. Learn., 2001, 45: 5
33 Chen T, He T, Benesty M, et al. Xgboost: extreme gradient boosting [J]. R Package Version 0.4-2, 2015, 1: 1
34 Wolpert D H. Stacked generalization [J]. Neur. Netw., 1992, 5: 241
35 Lerman P M. Fitting segmented regression models by grid search [J]. J. Roy. Stat. Soc. Ser. C.: Appl. Stat., 1980, 29: 77
36 Bergstra J, Bengio Y. Random search for hyper-parameter optimization [J]. J. Mach. Learn. Res., 2012, 13: 281
37 Shahriari B, Swersky K, Wang Z Y, et al. Taking the human out of the loop: A review of Bayesian optimization [J]. Proc. IEEE, 2016, 104: 148
38 Andrade C, Alonso C, Molina F J. Cover cracking as a function of bar corrosion: part I-experimental test [J]. Mater. Struct., 1993, 26: 453
39 Wan S W, Xu J. Experimental study on relationship between crack width and corrosion extent of concrete members [J]. Rail. Eng., 2016, (10): 128
(万胜武, 徐 杰. 混凝土构件锈胀裂缝宽度与锈蚀量关系的试验研究 [J]. 铁道建筑, 2016, (10): 128)
[1] SHANG Baihui, MA Yuantai, MENG Meijiang, LI Ying, LOU Ming, BAI Jing. Anodic Polarization Characteristics of Rebar Steel HRB400 in Simulated Concrete Pore Fluid[J]. 中国腐蚀与防护学报, 2024, 44(2): 422-428.
[2] DING Qingmiao, GAO Yuning, HOU Wenliang, QIN Yongxiang. Influence of Cl- Concentration on Corrosion Behavior of Reinforced Concrete in Soil[J]. 中国腐蚀与防护学报, 2021, 41(5): 705-711.
[3] CHENG Xudong, SUN Lianfang, CAO Zhifeng, ZHU Xingji, ZHAO Lixin. Numerical Simulation of Chloride Ion Induced Corrosion of Reinforced Concrete Structures in Marine Environment[J]. 中国腐蚀与防护学报, 2015, 35(2): 144-150.
[4] XU Jing, YAO Wu. CORROSION DETECTION OF STEEL IN CONCRETE BY USE OF GALVANOSTATIC PULSE TECHNIQUE[J]. 中国腐蚀与防护学报, 2010, 30(3): 181-186.
[5] . STUDY ON FIELD CORROSION MONITORING OF REBAR IN CONCRETE BY GUARD RING METHOD[J]. 中国腐蚀与防护学报, 2006, 26(5): 257-262 .
No Suggested Reading articles found!