Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (6): 1610-1616    DOI: 10.11902/1005.4537.2024.043
Current Issue | Archive | Adv Search |
Effect of B and Ce Micro-alloying on Secondary Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel
MA Jinyao1,2, DONG Nan1, GUO Zhensen1, HAN Peide1()
1. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2. Instrumental Analysis Center of Taiyuan University of Technology, Taiyuan 030024, China
Cite this article: 

MA Jinyao, DONG Nan, GUO Zhensen, HAN Peide. Effect of B and Ce Micro-alloying on Secondary Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1610-1616.

Download:  HTML  PDF(11049KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of B and Ce micro-alloying on secondary phase precipitation and corrosion resistance of S31254 super austenitic stainless steel were studied by OM, SEM, EDS and electrochemical tests. The results show that the addition of B and Ce can inhibit the precipitation of secondary phase in the aging process and change the morphology of precipitated phase along the grain boundary. The B and Ce micro-alloying can also improve the free-corrosion potential and pitting potential of the S31254 super austenitic stainless steel, promote the rapid formation of passive film, improve its stability synchronously, thus improve the pitting and intergranular corrosion resistance of the steel. Therefore, it follows that the synergistic effect of both B and Ce co-alloying on precipitation inhibition and corrosion resistance of S31254 is significantly more pronounced when compared to the addition of a single B element.

Key words:  S31254 super austenitic stainless steel      B      Ce micro-alloying      precipitated phase      corrosion resistance     
Received:  02 February 2024      32134.14.1005.4537.2024.043
ZTFLH:  TG174  
Corresponding Authors:  HAN Peide, E-mail: hanpeide@tyut.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.043     OR     https://www.jcscp.org/EN/Y2024/V44/I6/1610

SampleCSiMnPSCrNiMoCuNBCe
0B0.0120.640.470.0350.00619.1818.116.170.710.2000
50B0.0120.610.490.0170.00518.5918.116.120.580.200.0050
50B-20Ce0.0180.171.820.0070.00219.8418.076.210.560.1990.0050.002
50B-50Ce0.0150.171.870.0080.00220.0817.946.020.480.1870.0050.005
Table 1  Chemical compositions of S31254 super austenitic stainless steel samples added with B and Ce
Fig.1  Schematic illustration of the heat treatment schedule employed in this study
Fig.2  Microstructures of four S31254 stainless steels after solution treatment at 1220oC for 2 h: (a) 0B, (b) 50B, (c) 50B-20Ce, (d) 50B-50Ce
Fig.3  Microstructures of four S31254 stainless steels after aging at 950oC for 90 min: (a1, a2) 0B, (b1, b2) 50B, (c1, c2) 50B-20Ce, (d1, d2) 50B-50Ce
Fig.4  EDS elemental mappings of four S31254 stainless steels aged at 950oC for 90 min: (a) 0B, (b) 50B, (c) 50B-20Ce, (d) 50B-50Ce
PositionFeCrMoNi
0B-1(Fig.4a-1)39.226.722.38.1
0B-2(Fig.4a-2)44.525.621.88.1
50B-1(Fig.4b-1)38.722.924.69.9
50B-2(Fig.4b-2)39.822.822.710.8
50B-20Ce-1(Fig.4c-1)39.626.117.89.1
50B-20Ce-2(Fig.4c-2)40.225.716.69.4
50B-50Ce-1(Fig.4d-1)42.520.615.39.7
50B-20Ce-2(Fig.4d-2)42.420.215.710.6
Table 2  Elemental compositions of precipitates at different positions of four S31254 stainless steels
Fig.5  Potentiodynamic polarization curves (a) and EIS (b) of four S31254 stainless steels after aging at 950oC for 30 min
SampleEcorr / VIcorr / A·cm-2Epit / V
0B-0.30767.4063 × 10-70.9791
50B-0.28065.6066 × 10-71.0264
50B-20Ce-0.23764.3216 × 10-71.0284
50B-50Ce-0.15061.0656 × 10-71.0319
Table 3  Fitting electrochemical parameters of polarization curves of four S31254 stainless steels after aging at 950oC for 30 min
Fig.6  Morphologies of four S31254 stainless steels after solid solution (a1-d1) and soaking in boiling sulfuric acid-ferric sulfate solution for 24 h (a2-d2):(a1, a2) 0B, (b1, b2) 50B, (c1, c2) 50B-20Ce, (d1, d2) 50B-50Ce
1 Pu E X, Zheng W J, Xiang J Z, et al. Hot working characteristic of superaustenitic stainless steel 254SMO [J]. Acta Metall. Sin. Engl. Lett., 2014, 27: 313
2 Xing J, Liu C Z, Li A M, et al. Microstructural evolution and stability of coarse-grained S31254 super austenitic stainless steel during hot deformation [J]. Metals, 2022, 12: 1319
3 Dou Y P, Han S K, Wang L W, et al. Characterization of the passive properties of 254SMO stainless steel in simulated desulfurized flue gas condensates by electrochemical analysis, XPS and ToF-SIMS [J]. Corros. Sci., 2020, 165: 108405
4 Ge F, Wang L W, Dou Y P, et al. Elucidating the passivation kinetics and surface film chemistry of 254SMO stainless steel for chimney construction in simulated desulfurized flue gas condensates [J]. Constr. Build. Mater., 2021, 285: 122905
5 Zhang B B, Jiang Z H, Li H B, et al. Precipitation behavior and phase transformation of hyper duplex stainless steel UNS S32707 at nose temperature [J]. Mater. Charact., 2017, 129: 31
6 Zhang S C, Li H B, Jiang Z H, et al. Effects of Cr and Mo on precipitation behavior and associated intergranular corrosion susceptibility of superaustenitic stainless steel S32654 [J]. Mater. Charact., 2019, 152: 141
7 Li X X, Ou M Q, Wang M, et al. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60: 177
doi: 10.1016/j.jmst.2020.02.079
8 Takahashi J, Ishikawa K, Kawakami K, et al. Atomic-scale study on segregation behavior at austenite grain boundaries in boron- and molybdenum-added steels [J]. Acta Mater., 2017, 133: 41
9 Laha K, Kyono J, Kishimoto S, et al. Beneficial effect of B segregation on creep cavitation in a type 347 austenitic stainless steel [J]. Scr. Mater., 2005, 52: 675
10 Qurashi M S, Cui Y S, Wang J, et al. Corrosion resistance and passivation behavior of B-containing S31254 stainless steel in a low pH medium [J]. Int. J. Electrochem. Sci., 2019, 14: 10642
11 Wang T H, Wang J, Bai J C, et al. Effect of boron on dissolution and repairing behavior of passive film on S31254 super-austenitic stainless steel immersed in H2SO4 solution [J]. J. Iron Steel Res. Int., 2022, 29: 1012
12 Bai J G, Cui Y S, Wang J, et al. Effect of boron addition on the precipitation behavior of S31254 [J]. Metals, 2018, 8: 497
13 Li S, Ma J Y, Wang J, et al. Impact of boron addition on the hot deformation behavior and microstructure evolution of S31254 [J]. Mater. Lett., 2022, 315: 131971
14 Cai G J, Li C S. Effects of Ce on inclusions and corrosion resistance of low-nickel austenite stainless steel [J]. Mate. Corros., 2015, 66: 1445
15 Dong H Y, Hu L J, Liang W Y, et al. Effect of rare earth element Ce on corrosion resistance of 316L stainless steel [J]. Corros. Sci. Prot. Technol., 2018, 30: 489
(董海英, 胡丽娟, 梁婉怡 等. 稀土Ce对316L不锈钢耐腐蚀性能的影响 [J]. 腐蚀科学与防护技术, 2018, 30: 489)
doi: 10.11903/1002.6495.2017.288
16 Wang Q, Wang L J, Sun Y H, et al. The influence of Ce micro-alloying on the precipitation of intermetallic sigma phase during solidification of super-austenitic stainless steels [J]. J. Alloy. Compd., 2020, 815: 152418
17 Wang Q, Wang L J, Zhang W, et al. Effect of cerium on the austenitic nucleation and growth of high-Mo austenitic stainless steel [J]. Metall. Mater. Trans., 2020, 51B: 1773
18 Kim S M, Kim J S, Kim K T, et al. Effect of Ce addition on secondary phase transformation and mechanical properties of 27Cr-7Ni hyper duplex stainless steels [J]. Mat. Sci. Eng., 2013, 573A: 27
19 Wang J, Cui Y S, Bai J G, et al. The mechanism on the B addition to regulate phase precipitation and improve intergranular corrosion resistance in UNS S31254 superaustenitic stainless steels [J]. J. Electrochem. Soc., 2019, 166: C600
20 Chen X D, Li Y S, Zhu Y T, et al. Enhanced irradiation and corrosion resistance of 316LN stainless steel with high densities of dislocations and twins [J]. J. Nucl. Mater., 2019, 517: 234
21 Yue X Q, Zhang L, Hua Y, et al. Revealing the superior corrosion protection of the passive film on selective laser melted 316L SS in a phosphate-buffered saline solution [J]. Appl. Surf. Sci., 2020, 529: 147170
[1] YU Wenjuan, WANG Tiancong, ZHAO Dongyang, XIANG Xueyun, WU Hang, WANG Wen. Lifetime Prediction Model for Barrier-type Corrosion-resistant Coating[J]. 中国腐蚀与防护学报, 2024, 44(6): 1617-1624.
[2] ZHAN Fuyuan, LIU Xuanyi, HAUNG Shifu, LIU Shuaiqi, XU Yuanyuan, PAN Xigui, HE Hualin, LIU Guangming. Corrosion Behavior of SA210C Steel Beneath Deposit Film of Mixed Salts Na2SO4-NaCl in Air at 600oC[J]. 中国腐蚀与防护学报, 2024, 44(6): 1656-1662.
[3] WEI Kezheng, JIANG Wenlong, GONG Yiwei, QIU Xin, DING Hanlin, XIANG Chongchen, WANG Zijian. Effect of Aging Time on Precipitation of Second Phase and Corrosion Performance of Prismatic Plane of As-forged AZ80 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(6): 1557-1565.
[4] WANG Chengtao, SHEN Guanyi, XU Shaoyi, LI Wei, WANG Yuqiao, WANG Shuchen, WEN Dongdong, LI Pengyu. Numerical Simulation of Corrosion of Buried Metal Pipeline Under AC Interference Based on Physical Field Coupling[J]. 中国腐蚀与防护学报, 2024, 44(6): 1573-1580.
[5] SUN Qiongqiong, JIA Xiquan, XU Zhenlin, HE Yizhu, FAN Guangwei, ZHANG Wei, LI Huan. Structure and Adhesion of Oxide Scales on Casting Billet of 304 and 430 Stainless Steels[J]. 中国腐蚀与防护学报, 2024, 44(6): 1649-1655.
[6] LIANG Zihao, YING Zongquan, LIU Meimei, YANG Shuai. Prediction Method for Reinforced Concrete Corrosion-induced Crack Based on Stacking Integrated Model Fusion[J]. 中国腐蚀与防护学报, 2024, 44(6): 1601-1609.
[7] DONG Zheng, MAO Yongqi, MENG Zhou, CHEN Xiangxiang, FU Chuanqing, LU Chentao. Passivation Behavior of Steel Bar Subjected to Tensile Stress in Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2024, 44(6): 1547-1556.
[8] LU Tianai, JIANG Wenhao, WU Wei, ZHANG Junxi. Surface Modification of Corrosion-resistant Cast Iron Based on Functional Requirements of Grounding Materials[J]. 中国腐蚀与防护学报, 2024, 44(6): 1443-1453.
[9] YI Shuo, ZHOU Shengxuan, YE Peng, DU Xiaojie, XU Zhenlin, HE Yizhu. Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[10] ZHANG Yani, WANG Simin, FAN Bing. Corrosion and Passivation Behavior of TC4 Ti-alloy in a Simulated Downhole Liquid in High-temperature and High-pressed O2 + CO2 Environment[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[11] ZHANG Jinlong, FU Guangyan, NING Likui, LIU Enze, TAN Zheng, TONG Jian, ZHENG Zhi. Hot Corrosion Behavior of a Nickel Based Single Crystal High Temperature Alloy Subjected to Different Heat Treatments[J]. 中国腐蚀与防护学报, 2024, 44(6): 1625-1632.
[12] TANG Liqing, LI Xianghong, ZHU Ping, WU Zhongfa, LEI Ran, XU Juan. Corrosion Inhibition Performance and Mechanism of Tween-80 on a Cold Rolled Steel in NH2SO3H Solution[J]. 中国腐蚀与防护学报, 2024, 44(6): 1538-1546.
[13] WANG Yali, GUAN Fang, DUAN Jizhou, ZHANG Lina, YANG Zhengxian, HOU Baorong. Synergistic Inhibition of Rhamnolipid and 2, 2-dibromo-3-hypoazopropionamide on Microbiologically Influenced Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
[14] CAO Fuyang, WANG Haoquan, JI Qian, DING Hengnan, YUAN Zhizhong, LUO Rui. Tribo-corrosion Performance of Atmospheric Plasma Sprayed FeCoCrNiMn High Entropy Alloy Coatings[J]. 中国腐蚀与防护学报, 2024, 44(6): 1529-1537.
[15] MU Xianju, LI Xianghong, LEI Ran, DENG Shuduan. Inhibitory Action of Coffee Skin Extract on Corrosion of Steel in Trichloroacetic Acid Solution[J]. 中国腐蚀与防护学报, 2024, 44(6): 1465-1475.
No Suggested Reading articles found!