Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (5): 1100-1116    DOI: 10.11902/1005.4537.2023.391
Current Issue | Archive | Adv Search |
Research Progress on Corrosion Resistance of High-entropy Alloys
CHENG Yonghe1,2, FU Junwei2,3(), ZHAO Maomi2, SHEN Yunjun1
1 School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
2 Marine Corrosion Protection Research Institute of Guangxi Academy of Sciences, Nanning 530007, China
3 Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
Cite this article: 

CHENG Yonghe, FU Junwei, ZHAO Maomi, SHEN Yunjun. Research Progress on Corrosion Resistance of High-entropy Alloys. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1100-1116.

Download:  HTML  PDF(17157KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Compared with traditional alloys, high-entropy alloys display bettercorrosion resistance, high-temperature wear resistance and comprehensive mechanical properties. Thus, high-entropy alloys can find their applications in some harsh environments where traditional alloys may not satisfy the requirements. This work focuses on the corrosion resistance of high-entropy alloys. The influence of commonly used alloying elements on the corrosion resistance of high-entropy alloys with BCC, FCC, FCC+BCC and HCP crystal structures in sodium chloride and acidic solution media was discussed. The effect of the interaction between metal elements on corrosion resistance of high-entropy alloys was briefly explained. The influence of grain size, dislocation density, and crystal structure on the corrosion resistance of high-entropy alloys was also discussed. The results show that the corrosion resistance of high-entropy alloys can be improved by increasing grain size or reducing dislocation density. Several methods for improving the corrosion resistance of high-entropy alloys such as heat treatment and anodizing treatment, as well as application of corrosion inhibitor, were summarized. Finally, suggestions and prospects for the future development of high-entropy alloys were put forward.

Key words:  high-entropy alloy      corrosion resistance      harsh environment      microstructure      alloy element     
Received:  20 December 2023      32134.14.1005.4537.2023.391
ZTFLH:  TG174.2  
Fund: Startup Funding Project of Institute of Oceanology, Chinese Academy of Sciences(E12822101Q);Guangxi Key R&D Plan (Guike AB23026059)
Corresponding Authors:  FU Junwei, E-mail: hitfujw@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.391     OR     https://www.jcscp.org/EN/Y2024/V44/I5/1100

Fig.1  Variations of the stabilities of FCC and BCC phases for various HEA systems with VEC[37]
Fig.2  Surface morphologies of Al2 - x CoCrFeNiTi x HEAs after polarization in 3.5%NaCl solution: (a) x = 0, (b) x = 0.2, (c) x = 0.5, (d) x = 0.8, (e) x = 1.0, (f) x = 1.2 [42]
Fig.3  Nyquist (a), Bode (b) plots of as-cast Al2 - x CoCr-FeNiTi x HEAs and corresponding equivalent circuit model (c)[42]
AlloyIcorr / A·cm-2Ecorr / mVSHEIpass / A·cm-2Epit / mVSHE
Al0.4CrFe1.5MnNi0.53.2 × 10-3-3400.8 × 10-51120
Al0.4CrFe1.5MnNi0.5Mo0.16.1 × 10-5-601.0 × 10-51120
304 stainless steel7.2 × 10-5-1600.7 × 10-51150
Table 1  Ecorr, Icorr, Ipass, and Epit values of three alloys in 0.5 mol/L H2SO4 solution[48]
Fig.4  Potentiodynamic polarization curves of Co x CrCuFeMnNi HEAs in 3.5%NaCl solution[53]
AlloyIcorrEcorrEpitVacr
A·cm-2mVSHEmVSHEmm·a-1
Co0.54.04 × 10-5-964-910.43
Co1.03.84 × 10-5-888-880.41
Co1.51.11 × 10-5-785-410.12
Co2.06.95 × 10-6-787190.07
Table 2  Corrosion performance parameters of Co x CrCuFeMnNi HEAs in 3.5%NaCl solution[53]
Fig.5  SEM and 3D images of anodic dissolution morphologies of FeCoCrNiMo x alloys polarized in 1 mol/L NaCl for 600 s and 1800 s, (a1-c1) x = 0, (a2-c2) x = 0.1, (a3-c3) x = 0.3, (a4-c4) x = 0.6[57]
AlloyEcorr / mVSCEIcorr / A·cm-2Epit / mVSCEReference
Co0.5CrCuFeMnNi-9644.04 × 10-5-91[53]
Co1.0CrCuFeMnNi-8883.84 × 10-5-88[53]
Co1.5CrCuFeMnNi-7851.11 × 10-5-41[53]
Co2.0CrCuFeMnNi-7876.95 × 10-619[53]
Ni2CrFeMo0.1-1352.103 × 10-60.81[54]
Ni2CrFeMo0.2-1790.896 × 10-60.92[54]
Ni2CrFeMo0.3-1031.959 × 10-60.73[54]
Ni2CrFeMo0.4-1211.711 × 10-60.72[54]
Ni2CrFeMo0.5-1252.014 × 10-60.54[54]
Co1.5CrFeNi1.5Ti0.5-4405.7 × 10-70.33[55]
Co1.5CrFeNi1.5Ti0.5Mo0.1-3801.3 × 10-71.21[55]
Co1.5CrFeNi1.5Ti0.5Mo0.5-4902.0 × 10-71.16[55]
Co1.5CrFeNi1.5Ti0.5Mo0.8-5504.1 × 10-71.18[55]
FeCoNiCu-7860.949 × 10-6-[58]
FeCoNiCuSn0.02-8452.125 × 10-6-[58]
FeCoNiCuSn0.03-8533.233 × 10-6-[58]
FeCoNiCuSn0.04-7220.969 × 10-6-[58]
FeCoNiCuSn0.05-8511.354 × 10-6-[58]
FeCoNiCuSn0.07-8951.855 × 10-6-[58]
316L stainless steel-8755.068 × 10-5-[60]
430 stainless steel-5106.622-[61]
2205 stainless steel-3912.3-[62]
Table 3  Electrochemical parameters of FCC HEAs in 3.5%NaCl solution
Fig.6  BSE (a, c, e) and EBSD (b, d, f) images of Al x CoCrFeNi alloys: (a, b) x = 0.3, (c, d) x = 0.5, (e, f) x = 0.7[65,66]
Fig.7  Corrosion morphologies of Al x CoCrFeNiCu HEAs after immersion in 10%HNO3 solution for 24 h: (a) x = 0.5, (b) x = 1.0, (c) x = 1.5, (d) x = 2.0[70]
AlloyEcorr / mVSCEIcorr / A·cm-2Epit / mVSCEReference

CrFeMoV

Al0.2CrFeMoV

Al0.6CrFeMoV

AlCrFeMoV

Al0.3CoCrFeNi

Al0.5CoCrFeNi

Al0.7CoCrFeNi

FeCoNiCr

FeCoNiCrCu0.5

FeCoNiCrCu1.0

CoCrFeNiMnAlCu0.2

CoCrFeNiMnAlCu0.4

CoCrFeNiMnAlCu0.6

CoCrFeNiMnAlCu0.8

FeCoNi

FeCoNiCr0.5

FeCoNiCr

Al2CrFeCoCuTi

Al2CrFeCoCuTiNi0.5

Al2CrFeCoCuTiNi1.0

Al2CrFeCoCuTiNi1.5

Al2CrFeCoCuTiNi2.0

-397

-410

-460

-307

-187

-220

-285

-460

-490

-530

-495

-383

-341

-360

-325

-391

-410

-870

-0.82

-0.65

-0.84

-0.85

1.17 × 10-7

0.77 × 10-7

3.28 × 10-7

0.82 × 10-7

0.25 × 10-7

0.64 × 10-7

1.03 × 10-7

1.23 × 10-6

1.08 × 10-7

0.93 × 10-7

2.07 × 10-5

2.46 × 10-6

1.17 × 10-6

3.05 × 10-6

3.589 × 10-6

2.359 × 10-6

7.054 × 10-6

2.6 × 10-4

3.3 × 10-4

2.6 × 10-4

2.2 × 10-4

2.3 × 10-4

992

1025

1004

993

460

290

70

310

900

800

-

-

-

-

499

722

311

-

-

-

-

-

[64]

[64]

[64]

[64]

[65, 66]

[65, 66]

[65, 66]

[35]

[35]

[35]

[71]

[71]

[71]

[71]

[73]

[73]

[73]

[78]

[78]

[78]

[78]

[78]

Table 4  Electrochemical parameters of (FCC + BCC) HEAs in 3.5%NaCl solution
AlloySolutionEcorr / mVSCEIcorr / A·cm-2Eb / mVSCEReference
CrFe1.5MnNi0.50.5 mol/L H2SO4-2296.86 × 10-41227[69]
Al0.3CrFe1.5MnNi0.50.5 mol/L H2SO4-1942.39 × 10-31176[69]
Al0.5CrFe1.5MnNi0.50.5 mol/L H2SO4-2065.08 × 10-31114[69]
304 stainless steel0.5 mol/L H2SO4-1867.45 × 10-51178[69]
Al0.5CoCrFeNiCu10% (mass fraction) HNO3-2475.732 × 10-5-[70]
Al1.0CoCrFeNiCu10% (mass fraction) HNO3-2352.858 × 10-5-[70]
Al1.5CoCrFeNiCu10% (mass fraction) HNO3-4494.171 × 10-5-[70]
Al2.0CoCrFeNiCu10% (mass fraction) HNO3-3134.258 × 10-5-[70]
CuCr2Fe2Ni2Mn21 mol/L H2SO4-7302.09 × 10-6-[72]
Cu2Cr2Fe2Ni2Mn21 mol/L H2SO4-9004.02 × 10-6-[72]
FeNiCu0.5Ti0.50.5 mol/L H2SO4-3304.000 × 10-4-[74]
Cr0.3FeNiCu0.5Ti0.50.5 mol/L H2SO4-2224.967 × 10-6794[74]
Cr0.5FeNiCu0.5Ti0.50.5 mol/L H2SO4-2447.327 × 10-7756[74]
Cr0.7FeNiCu0.5Ti0.50.5 mol/L H2SO4-1815.455 × 10-7795[74]
Cr0.9FeNiCu0.5Ti0.50.5 mol/L H2SO4-2243.253 × 10-7705[74]
Cr1.2FeNiCu0.5Ti0.50.5 mol/L H2SO4-1858.822 ×10-7805[74]
Table 5  Electrochemical parameters of (FCC + BCC) HEAs in acidic solutions
Alloy

Total area S

cm2

Corrosion time T

h

Material density D kg·m-3

Mass loss M

g

Corrosion rate R

10-3 mm·s-1

CrFeCoNiTi0.55.467240067210.0032.980
CrFeCoNiTi1.04.612240073030.0011.084
Table 6  Corrosion rates of CrFeCoNiTi x (x = 0.5, 1.0) in seawater[90]
1 Li H, Zhang L Y, Zhang B Y, et al. Microstructure characterization and mechanical properties of stainless steel clad plate [J]. Materials, 2019, 12: 509
2 Peng Z C, Zheng Z B, Wang X Q, et al. The microstructure effect on fatigue and dwell-fatigue in a nickel-based superalloy [J]. Intermetallics, 2022, 151: 107740
3 Zhao P P, Song Y W, Dong K H, et al. Effect of passive film on the galvanic corrosion of titanium alloy Ti60 coupled to copper alloy H62 [J]. Mater. Corros., 2019, 70: 1745
4 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
5 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
6 Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: challenges and prospects [J]. Mater. Today, 2016, 19: 349
7 Miracle D, Majumdar B, Wertz K, et al. New strategies and tests to accelerate discovery and development of multi-principal element structural alloys [J]. Scr. Mater., 2017, 127: 195
8 Senkov O N, Miller J D, Miracle D B, et al. Accelerated exploration of multi-principal element alloys with solid solution phases [J]. Nat. Commun., 2015, 6: 6529
doi: 10.1038/ncomms7529 pmid: 25739749
9 Ikeda Y, Grabowski B, Körmann F. Ab initio phase stabilities and mechanical properties of multicomponent alloys: A comprehensive review for high entropy alloys and compositionally complex alloys [J]. Mater. Charact., 2019, 147: 464
doi: 10.1016/j.matchar.2018.06.019
10 Gao M C, Zhang B, Guo S M, et al. High-entropy alloys in hexagonal close-packed structure [J]. Metall. Mater. Trans., 2016, 47A: 3322
11 Fu Y, Li J, Luo H, et al. Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 80: 217
doi: 10.1016/j.jmst.2020.11.044
12 Varalakshmi S, Rao G A, Kamaraj M, et al. Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying [J]. J. Mater. Sci., 2010, 45: 5158
13 Qiu Y, Thomas S, Gibson M A, et al. Corrosion of high entropy alloys [J]. npj Mater. Degrad., 2017, 1: 15
14 Senkov O N, Scott J M, Senkova S V, et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy [J]. J. Mater. Sci., 2012, 47: 4062
15 Nascimento C B, Donatus U, Ríos C T, et al. A review on corrosion of high entropy alloys: exploring the interplay between corrosion properties, alloy composition, passive film stability and materials selection [J]. Mater. Res., 2022, 25: e20210442
16 Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants-A review [J]. Prog. Mater. Sci., 2009, 54: 397
17 Long M, Rack H J. Titanium alloys in total joint replacement—a materials science perspective [J]. Biomaterials, 1998, 19: 1621
doi: 10.1016/s0142-9612(97)00146-4 pmid: 9839998
18 Niinomi M. Recent metallic materials for biomedical applications [J]. Metall. Mater. Trans., 2002, 33A: 477
19 Yang W, Liu Y, Pang S J, et al. Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy [J]. Intermetallics, 2020, 124: 106845
20 Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy [J]. J. Alloy. Compd., 2011, 509: 6043
21 Dirras G, Lilensten L, Djemia P, et al. Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy [J]. Mater. Sci. Eng., 2016, 654A: 30
22 Tüten N, Canadinc D, Motallebzadeh A, et al. Microstructure and tribological properties of TiTaHfNbZr high entropy alloy coatings deposited on Ti-6Al-4V substrates [J]. Intermetallics, 2019, 105: 99
23 Hua N B, Wang W J, Wang Q T, et al. Mechanical, corrosion, and wear properties of biomedical Ti-Zr-Nb-Ta-Mo high entropy alloys [J]. J. Alloy. Compd., 2021, 861: 157997
24 Evans A G, He M Y, Suzuki A, et al. A mechanism governing oxidation-assisted low-cycle fatigue of superalloys [J]. Acta Mater., 2009, 57: 2969
25 Tong J, Dalby S, Byrne J, et al. Creep, fatigue and oxidation in crack growth in advanced nickel base superalloys [J]. Int. J. Fatigue, 2001, 23: 897
26 Eliaz N, Shemesh G, Latanision R M. Hot corrosion in gas turbine components [J]. Eng. Fail. Anal., 2002, 9: 31
27 Tsao T K, Yeh A C, Kuo C M, et al. High temperature oxidation and corrosion properties of high entropy superalloys [J]. Entropy, 2016, 18: 62
28 Gorr B, Müller F, Azim M, et al. High-temperature oxidation behavior of refractory high-entropy alloys: effect of alloy composition [J]. Oxid. Met., 2017, 88: 339
29 He F, Wang Z J, Wu Q F, et al. Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures [J]. Scr. Mater., 2017, 126: 15
30 Wu Z, Bei H, Otto F, et al. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys [J]. Intermetallics, 2014, 46: 131
31 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
32 Wang X Z, Wang Y H, Yu J B, et al. A brief review about perspective and properties of high-entropy alloys [J]. J. Netshape Form. Eng., 2022, 14(11): 73
王先珍, 王一涵, 俞嘉彬 等. 高熵合金性能特点与应用展望 [J]. 精密成形工程, 2022, 14(11): 73
33 Gromov V E, Shlyarova Y A, Konovalov S V, et al. Application of high-entropy alloys [J]. Steel Transl., 2021, 51: 700
34 Liang H, Qiao D X, Miao J W, et al. Anomalous microstructure and tribological evaluation of AlCrFeNiW0.2Ti0.5 high-entropy alloy coating manufactured by laser cladding in seawater [J]. J. Mater. Sci. Technol., 2021, 85: 224
doi: 10.1016/j.jmst.2020.12.050
35 Hsu Y J, Chiang W C, Wu J K. Corrosion behavior of FeCoNiCrCu x high-entropy alloys in 3.5% sodium chloride solution [J]. Mater. Chem. Phys., 2005, 92: 112
36 Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys [J]. Adv. Eng. Mater., 2008, 10: 534
37 Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys [J]. J. Appl. Phys., 2011, 109: 103505
38 Guo S, Liu C T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase [J]. Prog. Nat. Sci.: Mater. Int., 2011, 21: 433
39 Muangtong P, Rodchanarowan A, Chaysuwan D, et al. The corrosion behaviour of CoCrFeNi-x (x = Cu, Al, Sn) high entropy alloy systems in chloride solution [J]. Corros. Sci., 2020, 172: 108740
40 Zhang B, Wang J, Wu B, et al. Unmasking chloride attack on the passive film of metals [J]. Nat. Commun., 2018, 9: 2559
doi: 10.1038/s41467-018-04942-x pmid: 29967353
41 Wang F J, Zhang Y, Chen G L, et al. Cooling rate and size effect on the microstructure and mechanical properties of AlCoCrFeNi high entropy alloy [J]. J. Eng. Mater. Technol., 2009, 131: 034501
42 Zhao Y, Wang M L, Cui H Z, et al. Effects of Ti-to-Al ratios on the phases, microstructures, mechanical properties, and corrosion resistance of Al2-xCoCrFeNiTix high-entropy alloys [J]. J. Alloy. Compd., 2019, 805: 585
43 Yu Y, Wang J, Li J S, et al. Characterization of BCC phases in AlCoCrFeNiTi x high entropy alloys [J]. Mater. Lett., 2015, 138: 78
44 Liu L, Li Y, Wang F H. Influence of micro-structure on corrosion behavior of a Ni-based superalloy in 3.5% NaCl [J]. Electrochim. Acta, 2007, 52: 7193
45 Liu J, Liu H, Chen P J, et al. Microstructural characterization and corrosion behaviour of AlCoCrFeNiTix high-entropy alloy coatings fabricated by laser cladding [J]. Surf. Coat. Technol., 2019, 361: 63
46 Zhou Y J, Zhang Y, Wang Y L, et al. Solid solution alloys of AlCoCrFeNiTi x with excellent room-temperature mechanical properties [J]. Appl. Phys. Lett., 2007, 90: 181904
47 Wang X F, Zhang Y, Qiao Y, et al. Novel microstructure and properties of multicomponent CoCrCuFeNiTi x alloys [J]. Intermetallics, 2007, 15: 357
48 Hsu W C, Kao W P, Yeh J W, et al. Effect of Mo on the mechanical and corrosion behaviors in non-equal molar AlCrFeMnNi BCC high-entropy alloys [J]. Materials, 2022, 15: 751
49 Chang X X. Composition, microstructure and mechanical properties of FCC-structure high entropy alloys [D]. Dalian: Dalian University of Technology, 2018
常晓雪. FCC结构高熵合金的成分、组织及力学性能研究 [D]. 大连: 大连理工大学, 2018
50 Tsai C W, Chen Y L, Tsai M H, et al. Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi [J]. J. Alloy. Compd., 2009, 486: 427
51 Luo H, Li Z M, Mingers A M, et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution [J]. Corros. Sci., 2018, 134: 131
52 Wang L T, Mercier D, Zanna S, et al. Study of the surface oxides and corrosion behaviour of an equiatomic CoCrFeMnNi high entropy alloy by XPS and ToF-SIMS [J]. Corros. Sci., 2020, 167: 108507
53 Zhao R F, Ren B, Cai B, et al. Corrosion behavior of CoxCrCu-FeMnNi high-entropy alloys prepared by hot pressing sintered in 3.5% NaCl solution [J]. Results. Phys., 2019, 15: 102667
54 Wei L, Wang Z J, Wu Q F, et al. Effect of Mo element and heat treatment on corrosion resistance of Ni2CrFeMo x high-entropy alloyin NaCl solution [J]. Acta Metall. Sin., 2019, 55: 840
魏 琳, 王志军, 吴庆峰 等. Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响 [J]. 金属学报, 2019, 55: 840
55 Chou Y L, Yeh J W, Shih H C. The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5-Ti0.5Mo x in aqueous environments [J]. Corros. Sci., 2010, 52: 2571
56 Wang W R, Wang J Q, Yi H G, et al. Effect of molybdenum additives on corrosion behavior of (CoCrFeNi)100 - x Mo x high-entropy alloys [J]. Entropy, 2018, 20: 908
57 Dai C D, Zhao T L, Du C W, et al. Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMo x high-entropy alloys [J]. J. Mater. Sci. Technol., 2020, 46: 64
58 Zheng Z Y, Li X C, Zhang C, et al. Microstructure and corrosion behaviour of FeCoNiCuSnx high entropy alloys [J]. Mater. Sci. Technol., 2015, 31: 1148
59 Chen Y Y, Hong U T, Shih H C, et al. Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel [J]. Corros. Sci., 2005, 47: 2679
60 Li W S, Xing J, Zhang J, et al. Microstructure and anti-corrosion behavior in 3.5% NaCl of warm compacted and sintered 316L [J]. Rare Metal Mater. Eng., 2022, 51: 4714
李文生, 邢 健, 张 杰 等. 温压烧结316L不锈钢组织和耐3.5%NaCl腐蚀行为 [J]. 稀有金属材料与工程, 2022, 51: 4714
61 Farhadi K, Zebhi H, Moghadam P N, et al. Electrochemical preparation of nano-colloidal polyaniline in polyacid matrix and its application to the corrosion protection of 430SS [J]. Synthetic Met., 2014, 195: 29
62 Potgieter J H, Olubambi P A, Cornish L, et al. Influence of nickel additions on the corrosion behaviour of low nitrogen 22% Cr series duplex stainless steels [J]. Corros. Sci., 2008, 50: 2572
63 Zhao Y, Cao J Y, Fang Z G, et al. Application prospects of corrosion-resistant high-entropy alloys in island and reef equipment [J]. Equip. Environ. Eng., 2021, 18(11): 42
赵 伊, 曹京宜, 方志刚 等. 耐蚀高熵合金在岛礁装备中的应用前景 [J]. 装备环境工程, 2021, 18(11): 42
64 Raza A, Abdulahad S, Kang B, et al. Corrosion resistance of weight reduced AlxCrFeMoV high entropy alloys [J]. Appl. Surf. Sci., 2019, 485: 368
doi: 10.1016/j.apsusc.2019.03.173
65 Shi Y Z, Collins L, Balke N, et al. In-situ electrochemical-AFM study of localized corrosion of Al x CoCrFeNi high-entropy alloys in chloride solution [J]. Appl. Surf. Sci., 2018, 439: 533
66 Shi Y Z, Collins L, Feng R, et al. Homogenization of Al x CoCrFeNi high-entropy alloys with improved corrosion resistance [J]. Corros. Sci., 2018, 133: 120
67 Wang S. Study on the mechanical properties and corrosion resistance of Al x CoFeNiCr1 - x high-entropy alloys [D]. Taiyuan: North University of China, 2020
王 帅. Al x CoFeNiCr1 - x 高熵合金微观组织, 力学性能及耐腐蚀性能研究 [D]. 太原: 中北大学, 2020
68 Shi Y Z, Yang B, Xie X, et al. Corrosion of Al x CoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior [J]. Corros. Sci., 2017, 119: 33
69 Lee C P, Chang C C, Chen Y Y, et al. Effect of the aluminium content of Al x CrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments [J]. Corros. Sci., 2008, 50: 2053
70 Hu R, Du J H, Zhang Y J, et al. Microstructure and corrosion properties of Al x CuFeNiCoCr (x = 0.5, 1.0, 1.5, 2.0) high entropy alloys with Al content [J]. J. Alloy. Compd., 2022, 921: 165455
71 Wu H, Chen G, Tang X T, et al. Effect of Cu content on the microstructure and properties of CoCrFeNiMnAlCu x High-entropy alloy [J]. Nonferrous Met. Eng., 2022, 12(7): 1
吴 昊, 陈 刚, 唐啸天 等. Cu含量对CoCrFeNiMnAlCu x 高熵合金微观组织及性能的影响 [J]. 有色金属工程, 2022, 12(7): 1
72 Ren B, Liu Z X, Li D M, et al. Corrosion behavior of CuCrFeNiMn high entropy alloy system in 1 M sulfuric acid solution [J]. Mater. Corros., 2012, 63: 828
73 Chai W K, Lu T, Pan Y. Corrosion behaviors of FeCoNiCr x (x = 0, 0.5, 1.0) multi-principal element alloys: Role of Cr-induced segregation [J]. Intermetallics, 2020, 116: 106654
74 Lin C, Meng L, Tan M T, et al. Microstructures and properties of Cr x-FeNiCu0.5Ti0.5 high-entropy alloys for corrosion resistance [J]. Intermetallics, 2023, 153: 107781
75 Chen X, Hu J X, Liu Y, et al. Corrosion behavior in nitric acid solution and tensile properties of (CuFeNiMn)1 - x Cr x HEAs [J]. Met. Mater. Int., 2021, 27: 2230
76 Kalsar R, Ray R K, Suwas S. Effects of alloying addition on deformation mechanisms, microstructure, texture and mechanical properties in Fe-12Mn-0.5C austenitic steel [J]. Mater. Sci. Eng., 2018, 729A: 385
77 Crook P. Corrosion-resistant nickel alloys, Part 3: nickel alloys provide levels of corrosion resistance not possible with other alloys. This is part three of a four-part series about corrosion-resistant nickel alloys [J]. Adv. Mater. Process., 2007, 165: 45
78 Qiu X W, Liu C G. Microstructure and properties of Al2CrFeCoCuTiNi x high-entropy alloys prepared by laser cladding [J]. J. Alloy. Compd., 2013, 553: 216
79 Kao Y F, Lee T D, Chen S K, et al. Electrochemical passive properties of Al x CoCrFeNi (x = 0, 0.25, 0.50, 1.00) alloys in sulfuric acids [J]. Corros. Sci., 2010, 52: 1026
80 Deng J Q, Cao Z H. Research progress of High-entropy alloy [J]. J. Anyang Inst. Technol., 2018, 17(6): 11
邓景泉, 操振华. 高熵合金的研究进展 [J]. 安阳工学院学报, 2018, 17(6): 11
81 Zhang Z T, Axinte E, Ge W J, et al. Microstructure, mechanical properties and corrosion resistance of CuZrY/Al, Ti, Hf series high-entropy alloys [J]. Mater. Design, 2016, 108: 106
82 Zhao Y J, Qiao J W, Ma S G, et al. A hexagonal close-packed high-entropy alloy: The effect of entropy [J]. Mater. Des., 2016, 96: 10
83 Rogal Ł, Czerwinski F, Jochym P T, et al. Microstructure and mechanical properties of the novel Hf25Sc25Ti25Zr25 equiatomic alloy with hexagonal solid solutions [J]. Mater. Design, 2016, 92: 8
84 Tsau C H, Yeh C Y, Tsai M C. The effect of Nb-content on the microstructures and corrosion properties of CrFeCoNiNbx high-entropy alloys [J]. Materials, 2019, 12: 3716
85 Wen X, Cui X F, Jin G, et al. In-situ synthesis of nano-lamellar Ni1.5CrCoFe0.5Mo0.1Nb x eutectic high-entropy alloy coatings by laser cladding: Alloy design and microstructure evolution [J]. Surf. Coat. Technol., 2021, 405: 126728
86 Fu J W, Wang J C, Li F, et al. Effect of Nb addition on the microstructure and corrosion resistance of ferritic stainless steel [J]. Appl. Phys., 2020, 126A: 126
87 Habazaki H, Ukai H, Izumiya K, et al. Corrosion behaviour of amorphous Ni-Cr-Nb-P-B bulk alloys in 6 M HCl solution [J]. Mater. Sci. Eng., 2001, 318A: 77
88 Liu X C, Wang H F, Liu Y, et al. The effect of Nb content on microstructure and properties of laser cladding 316L SS coating [J]. Surf. Coat. Technol., 2021, 425: 127684
89 Wang Z B, Hu H X, Zheng Y G, et al. Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid [J]. Corros. Sci., 2016, 103: 50
90 Jia Q. CrFeCoNiTi x high entropy alloy mechanical properties and corrosion resistance research [D]. Harbin: Harbin University of Science and Technology, 2015
贾 强. CrFeCoNiTi x 高熵合金力学性能及耐腐蚀性能研究 [D]. 哈尔滨: 哈尔滨理工大学, 2015
91 Zhou Z M, Li H Y, Liu Y, et al. Effect of Ti on the corrosion behavior of (FeCrCoNi)100 - x Ti x alloy [J]. Corros. Sci., 2022, 209: 110807
92 Izadi M, Soltanieh M, Alamolhoda S, et al. Microstructural characterization and corrosion behavior of Al x CoCrFeNi high entropy alloys [J]. Mater. Chem. Phys., 2021, 273: 124937
93 Qiu Y, Thomas S, Fabijanic D, et al. Microstructural evolution, electrochemical and corrosion properties of Al x CoCrFeNiTi y high entropy alloys [J]. Mater. Des., 2019, 170: 107698
94 Yang H O, Shang X L, Wang L L, et al. Effect of constituent elements on the corrosion resistance of single-phase CoCrFeNi high-entropy alloys in NaCl solution [J]. Acta Metall. Sin., 2018, 54: 905
doi: 10.11900/0412.1961.2017.00399
杨海欧, 尚旭亮, 王理林 等. 单相CoCrFeNi高熵合金的组成元素对其在NaCl溶液中的耐蚀性能的影响 [J]. 金属学报, 2018, 54: 905
doi: 10.11900/0412.1961.2017.00399
95 Parakh A, Vaidya M, Kumar N, et al. Effect of crystal structure and grain size on corrosion properties of AlCoCrFeNi high entropy alloy [J]. J. Alloy. Compd., 2021, 863: 158056
96 Vaidya M, Prasad A, Parakh A, et al. Influence of sequence of elemental addition on phase evolution in nanocrystalline AlCoCrFeNi: Novel approach to alloy synthesis using mechanical alloying [J]. Mater. Des., 2017, 126: 37
97 Ralston K D, Birbilis N. Effect of grain size on corrosion: a review [J]. Corrosion, 2010, 66: 075005
98 Zhang X R, Guo J, Zhang X H, et al. Influence of remelting and annealing treatment on corrosion resistance of AlFeNiCoCuCr high entropy alloy in 3.5% NaCl solution [J]. J. Alloy. Compd., 2019, 775: 565
99 Lin C M, Tsai H L, Bor H Y. Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy [J]. Intermetallics, 2010, 18: 1244
100 Lin C M, Tsai H L. Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy [J]. Intermetallics, 2011, 19: 288
101 Lee C P, Chen Y Y, Hsu C Y, et al. Enhancing pitting corrosion resistance of Al x CrFe1.5MnNi0.5 high-entropy alloys by anodic treatment in sulfuric acid [J]. Thin Solid Films, 2008, 517: 1301
102 Chou Y L, Wang Y C, Yeh J W, et al. Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions [J]. Corros. Sci., 2010, 52: 3481
103 Zuo Y, Wang H T, Zhao J M, et al. The effects of some anions on metastable pitting of 316L stainless steel [J]. Corros. Sci., 2002, 44: 13
[1] LU Tianai, JIANG Wenhao, WU Wei, ZHANG Junxi. Surface Modification of Corrosion-resistant Cast Iron Based on Functional Requirements of Grounding Materials[J]. 中国腐蚀与防护学报, 2024, 44(6): 1443-1453.
[2] YI Shuo, ZHOU Shengxuan, YE Peng, DU Xiaojie, XU Zhenlin, HE Yizhu. Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[3] MA Jinyao, DONG Nan, GUO Zhensen, HAN Peide. Effect of B and Ce Micro-alloying on Secondary Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[4] ZHAO Qian, ZHANG Jie, MAO Ruirui, MIAO Chunhui, BIAN Yafei, TENG Yue, TANG Wenming. Stress Corrosion and Its Mechanism of Hot-dip Galvanized Coating on Q235 Steel Structure[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[5] PAN Zongyu, LIU Jing, JIANG Zhizhong, LUO Lin, JIA Hanbing, LIU Xinyu. Corrosion Behavior of Fe34Cr30Mo15Ni15Nb3Al3 High-entropy Alloy in Molten Pb-Bi Eutectic Containing 10-6% Oxygen at 500oC[J]. 中国腐蚀与防护学报, 2024, 44(5): 1353-1360.
[6] LYU Xiaoming, WANG Zhenyu, HAN En-Hou. Preparation and Corrosion Resistance of Nano-ZrO2 Modified Epoxy Thermal Insulation Coatings[J]. 中国腐蚀与防护学报, 2024, 44(5): 1234-1242.
[7] MA Xiaowei, XUE Rongjie, WANG Taotao, YANG Liang, LIU Zhenguang. Comparison of Corrosion Resistance of Zr-based Amorphous Alloys and Traditional Alloys in Seawater[J]. 中国腐蚀与防护学报, 2024, 44(4): 949-956.
[8] TIAN Mengzhen, WANG Yong, LI Tao, WANG Chuan, GUO Quanzhong, GUO Jianxi. Effect of Electrical Parameters on Energy Consumption and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 1064-1072.
[9] LIN Yi, LIU Tao, GUO Yanbing, RUAN Qing, GUO Zhangwei, DONG Lihua. Research and Development of Welding Materials For Low-temperature Steel and Corrosion Evaluation Methods[J]. 中国腐蚀与防护学报, 2024, 44(4): 957-964.
[10] ZHU Huiwen, ZHENG Li, ZHANG Hao, YU Baoyi, CUI Zhibo. Effect of Be on Oxidation Behavior and Flame Retardancy of WE43 Mg-alloy at High-temperature[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[11] HE Jiaxuan, ZHANG Yutong, GUAN Xudong, TANG Jianhua, HUANG Hai, ZHAO Xuhui, TANG Yuming, ZUO Yu. Present Status and Progress of Corrosion Protection for Microchannel Heat Exchangers of Al-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 993-1000.
[12] LIU Jiuyun, DONG Lijin, ZHANG Yan, WANG Qinying, LIU Li. Research Progress on Sulfide Stress Corrosion Cracking of Dissimilar Weld Joints in Oil and Gas Fields[J]. 中国腐蚀与防护学报, 2024, 44(4): 863-873.
[13] GENG Zhenzhen, ZHANG Yuzhu, DU Xiaojiang, WU Hanhui. Synergistic Effect of S2- and Cl- on Corrosion and Passivation Behavior of 316L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[14] SHI Chao, LI Jiahao, WANG Rongxiang, ZHANG Bo, ZHOU Lanxin, LIU Guangming, SHAO Yawei. Effect of Different Bias Voltages on Anti-corrosion Properties of Multi-arc Ion Plated Al-coatings on 45# Carbon Steel[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
[15] XIE Yun, LIU Ting, WANG Wen, ZHOU Jialin, TANG Song. Effect of Microstructure on Corrosion Resistance of a High-strength Ultralightweight Mg-Li Alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
No Suggested Reading articles found!