Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (5): 1353-1360    DOI: 10.11902/1005.4537.2023.331
Current Issue | Archive | Adv Search |
Corrosion Behavior of Fe34Cr30Mo15Ni15Nb3Al3 High-entropy Alloy in Molten Pb-Bi Eutectic Containing 10-6% Oxygen at 500oC
PAN Zongyu1,2, LIU Jing2(), JIANG Zhizhong2,3, LUO Lin2,3, JIA Hanbing2,3, LIU Xinyu2,3
1 Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
2 Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
3 University of Science and Technology of China, Hefei 230026, China
Cite this article: 

PAN Zongyu, LIU Jing, JIANG Zhizhong, LUO Lin, JIA Hanbing, LIU Xinyu. Corrosion Behavior of Fe34Cr30Mo15Ni15Nb3Al3 High-entropy Alloy in Molten Pb-Bi Eutectic Containing 10-6% Oxygen at 500oC. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1353-1360.

Download:  HTML  PDF(9810KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this paper, a high-entropy alloy Fe34Cr30Mo15Ni15Nb3Al3 was prepared via vacuum induction melting technique. The cast alloy consists of FCC phase, Laves phase and B2-NiAl phase. Then, the high-entropy alloy was subjected to corrosion test at 500oC in static molten Pb-Bi eutectic (MBE) containing 10-6% oxygen (in mass fraction) for 1000, 1500 and 2000 h, respectively. The results showed that after corrosion test, the high entropy alloy did not show obvious signs of being attacked by molten Pb-Bi eutectic, namely, there was no obvious dissolution of alloy components and phase transformation, and no obvious inward permeation of Pb and Bi from MBE into the alloy. Only a continuous Fe-Cr spinel scale was formed on the Laves phase region after static corrosion from 1000 h to 2000 h. It is worth mentioning in particular that after exposure for 1000 h, both of Fe-Cr spinel and Cr-depleted Fe-Cr spinel was formed on the surface of FCC/B2-NiAl phase region. As the corrosion time increased to 1500 h, the outer scale of Cr-depleted Fe-Cr spinel formed on the FCC/B2-NiAl phase region spalled off. After exposure for 2000 h, Fe3O4 was generated above the Fe-Cr spinel scale, and covered the entire surface of FCC/B2-NiAl phase region. In conclusion, the oxide scales formed on the high-entropy alloy are very thin and compact, with a maximum thickness less than 3 µm, so that the high-entropy alloy presented good resistance to MBE corrosion. The outstanding corrosion resistance of high-entropy alloy may be attributed to the homogeneous distribution of Laves phase, which effectively suppresses the outward diffusion of components of the high-entropy alloy.

Key words:  Fe34Cr30Mo15Ni15Nb3Al3 high-entropy alloy      Liquid lead-bismuth eutectic alloy corrosion      Laves phase      Fe-Cr spinel     
Received:  23 October 2023      32134.14.1005.4537.2023.331
ZTFLH:  TG178  
Fund: National Key R&D Program of China(2022YFB1902502);Key Research and Development Project of Hefei Science Center, CAS(2022HSC-CIP028);HFIPS Director's Fund(YZJJ2022QN39)
Corresponding Authors:  LIU Jing, E-mail: jing.liu@inest.cas.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.331     OR     https://www.jcscp.org/EN/Y2024/V44/I5/1353

Fig.1  XRD pattern of HEA-15 alloy before corrosion
Fig.2  Microstructure of HEA-15 alloy before corrosion (a) and enlarged region in Fig.2a (b)
RegionFeCrMoNbAlNi
Map scanning34.529.814.92.92.915.0
Laves phase (white)29.120.623.713.41.711.5
FCC phase (gray)36.932.813.0-2.614.7
B2-NiAl phase (black)30.428.011.0-6.923.7
Table 1  Mass fraction of elements in HEA-15 alloy
Fig.3  XRD patterns of HEA-15 alloy surface after different corrosion times
Fig.4  Surface morphologies of HEA-15 alloy after corrosion for 1000 h (a, d), 1500 h (b, e) and 2000 h (c, f)
RegionOFeCrNiAlMoNb
Point 135.622.223.27.53.36.22.0
Point 254.019.517.13.52.83.1-
Point 337.821.223.49.43.94.2-
Point 441.918.020.07.03.67.02.6
Point 536.624.423.48.33.14.2-
Point 629.626.423.98.93.46.51.3
Point 760.026.38.11.91.72.0-
Table 2  EDS data marked in Fig.4
Fig.5  Comparison of the widths (a) and lengths (b) between Laves phases in Fig.2a and the depression areas of the oxide layer after corrosion for 1000 h in Fig.4a
Fig.6  Cross-sectional morphologies (a, c, e) and EDS maps (b, d, f) of HEA-15 alloy after corrosion for 1000 h (a, b), 1500 h (c, d) and 2000 h (e, f)
Fig.7  Line scan results of HEA-15 alloy after different corrosion times corresponding to the cross-section in Fig.6a (a), Fig.6c (b) and Fig.6e (c)
Oxide type1000 h1500 h2000 h
Fe-Cr Spinel1.121.241.93
Fe3O4--0.70
Table 3  Thickness of oxide layer for different corrosion times (µm)
1 Kelly J E. Generation IV international forum: a decade of progress through international cooperation [J]. Prog. Nucl. Energy, 2014, 77: 240
2 DOE-GIF G I F. A Technology Roadmap for Generation IV Nuclear Energy Systems [R]. Technical Report GIF2002200, GIF, 2002.
3 Li N. Lead-alloy coolant technology and materials-technology readiness level evaluation [J]. Prog. Nucl. Energy, 2008, 50: 140
4 Nuclear Energy Agency. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermalhydraulics and technologies [R]. Paris: Organisation for Economic Cooperation and Development, 2015
5 Müller G, Heinzel A, Konys J, et al. Behavior of steels in flowing liquid PbBi eutectic alloy at 420-600 ℃ after 4000-7200 h [J]. J. Nucl. Mater., 2004, 335: 163
6 Zhang J S. A review of steel corrosion by liquid lead and lead–bismuth [J]. Corros. Sci., 2009, 51: 1207
7 Gong X, Li R, Sun M Z, et al. Opportunities for the LWR ATF materials development program to contribute to the LBE-cooled ADS materials qualification program [J]. J. Nucl. Mater., 2016, 482: 218
8 Gorse D, Auger T, Vogt J B, et al. Influence of liquid lead and lead-bismuth eutectic on tensile, fatigue and creep properties of ferritic/martensitic and austenitic steels for transmutation systems [J]. J. Nucl. Mater., 2011, 415: 284
9 Li M Y, Jiang Z Z, Chen L L, et al. Study on corrosion products of T91 and 316L steels in oxygen controlled LBE for 600 hrs [J]. Nucl. Sci. Eng., 2018, 38: 784
李明扬, 姜志忠, 陈刘利 等. T91和316L钢在氧控铅铋中600小时后腐蚀产物分析 [J]. 核科学与工程, 2018, 38: 784
10 Tian S J, Zhang J W. Corrosion behavior of 316L and T91 steels in stagnant lead-bismuth eutectic at 550 °C [J]. J. Univ. Sci. Technol. China, 2015, 45(9): 751
田书建, 张建武. 316L和T91不锈钢在550℃静态铅铋合金中的腐蚀行为 [J]. 中国科学技术大学学报, 2015, 45(9): 751
11 Takaya S, Furukawa T, Müller G, et al. Al-containing ODS steels with improved corrosion resistance to liquid lead–bismuth [J]. J. Nucl. Mater., 2012, 428: 125
12 George E P, Curtin W A, Tasan C C. High entropy alloys: a focused review of mechanical properties and deformation mechanisms [J]. Acta Mater., 2020, 188: 435
13 Li Z Z, Zhao S T, Ritchie R O, et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys [J]. Prog. Mater. Sci., 2019, 102: 296
14 Sathiyamoorthi P, Kim H S. High-entropy alloys with heterogeneous microstructure: processing and mechanical properties [J]. Prog. Mater. Sci., 2022, 123: 100709
15 Zhang P, Jiang L, Yang J X, et al. Research progress in refractory high entropy alloys for nuclear applications [J]. Mater. Rep., 2022, 36: 22060260
张 平, 蒋 丽, 杨金学 等. 核用难熔高熵合金的研究进展 [J]. 材料导报, 2022, 36: 22060260
16 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci, 2014, 61: 1
17 Huang Y H, Wang J B, Wang Z J, et al. Corrosion behavior of high strength AlCrFeNi multi-principal-component alloy in lead-bismuth alloy [J]. Nucl. Power. Eng., 2023, 44(S1): 137
黄赟浩, 王健斌, 王志军 等. 铅铋合金环境中高强AlCrFeNi多主元合金的腐蚀行为 [J]. 核动力工程, 2023, 44(S1): 137
18 Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200 pmid: 25160691
19 Shi H, Fetzer R, Jianu A, et al. Influence of alloying elements (Cu, Ti, Nb) on the microstructure and corrosion behaviour of AlCrFeNi-based high entropy alloys exposed to oxygen-containing molten Pb [J]. Corros. Sci., 2021, 190: 109659
20 Xu Y C, Song C, Zhang Y G, et al. An energetic evaluation of dissolution corrosion capabilities of liquid metals on iron surface [J]. Phys. Chem. Chem. Phys., 2014, 16: 16837
doi: 10.1039/c4cp01224k pmid: 25005629
21 Yeh J W, Chang S Y, Hong Y D, et al. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements [J]. Mater. Chem. Phys., 2007, 103: 41
22 Li D D, Song C, He H Y, et al. An atomistic insight into the corrosion of the oxide film in liquid lead-bismuth eutectic [J]. Phys. Chem. Chem. Phys., 2014, 16: 7417
doi: 10.1039/c3cp54377c pmid: 24626636
23 Shi H, Jianu A, Weisenburger A, et al. Corrosion resistance and microstructural stability of austenitic Fe-Cr-Al-Ni model alloys exposed to oxygen-containing molten lead [J]. J. Nucl. Mater., 2019, 524: 177
24 Gossé S. Thermodynamic assessment of solubility and activity of iron, chromium, and nickel in lead bismuth eutectic [J]. J. Nucl. Mater., 2014, 449: 122
25 Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J]. Acta Mater., 2013, 61: 4887
26 Lobnig R E, Schmidt H P, Hennesen K, et al. Diffusion of cations in chromia layers grown on iron-base alloys [J]. Oxid. Met., 1992, 37: 81
27 Huang D, Lu J S, Zhuang Y X, et al. The role of Nb on the high temperature oxidation behavior of CoCrFeMnNbxNi high-entropy alloys [J]. Corros. Sci., 2019, 158: 108088
28 Ide S, Funakawa Y, Kato Y, et al. Retardation of 20%Cr steel oxidation with Laves phase precipitation [J]. Mater. Sci. Forum, 2007, 539-543: 4887
29 Gong X, Xiao J, Wang H, et al. Corrosion behavior and mechanisms of ferritic/martensitic steels and austenitic stainless steels in liquid lead-bismuth eutectic [J]. Nucl. Sci. Eng., 2020, 40: 864
龚 星, 肖 军, 王 浩 等. 铁素体/马氏体钢和奥氏体不锈钢的液态铅铋腐蚀行为与机理 [J]. 核科学与工程, 2020, 40: 864
30 Luo W W, Huang Q Y, Luo L, et al. Effect of Ce on microstructure evolution of oxide scale for CLAM steel exposed to LBE containing 10-6 wt% oxygen at 500oC [J]. J. Nucl. Mater., 2023, 573: 154109
31 Hasegawa M. Ellingham diagram [A]. Seetharaman S. Treatise on Process Metallurgy: Volume 1: Process Fundamentals [M]. Amsterdam: Elsevier, 2014: 507
32 Stott F H, Wood G C, Stringer J. The influence of alloying elements on the development and maintenance of protective scales [J]. Oxid. Met., 1995, 44: 113
33 Wang H, Xiao J, Wang H, et al. Corrosion behavior and surface treatment of cladding materials used in high-temperature lead-bismuth eutectic alloy: a review [J]. Coatings, 2021, 11: 364
[1] DONG Nan, QIN Weirong, HAN Peide. Theoretical Study in Adsorption Behavior of S and Cl on Surface and its Effect on Corrosion Performance of γ-FeM(111) (M = Cr, Ni, Mn, Mo, Cu, Ce)[J]. 中国腐蚀与防护学报, 2024, 44(6): 1566-1572.
[2] DONG Zheng, MAO Yongqi, MENG Zhou, CHEN Xiangxiang, FU Chuanqing, LU Chentao. Passivation Behavior of Steel Bar Subjected to Tensile Stress in Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2024, 44(6): 1547-1556.
[3] YANG Haiyun, LIU Chunquan, XIONG Fen, CHEN Minna, XIE Yuelin, PENG Longsheng, SUN Sheng, LIU Haizhou. Research Progress on Preparation of Corrosion-resistant Coatings by Extreme High-speed Laser Material Deposition[J]. 中国腐蚀与防护学报, 2024, 44(4): 847-862.
[4] HE Jiaxuan, ZHANG Yutong, GUAN Xudong, TANG Jianhua, HUANG Hai, ZHAO Xuhui, TANG Yuming, ZUO Yu. Present Status and Progress of Corrosion Protection for Microchannel Heat Exchangers of Al-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 993-1000.
[5] ZHANG Chenglong, ZHANG Bin, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Corrosion Behavior of Medium Entropy CoCrNi-alloy in NH4Cl Solutions[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[6] MA Heng, TIAN Huiyun, LIU Yuxi, WANG Yuexiang, HE Kang, CUI Zhongyu, CUI Hongzhi. Corrosion Behavior of S420 Steel in Different Marine Zones[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[7] HU Lihua, YI Hualei, YANG Weijian, SUN Chong, SUN Jianbo. Effect of Water Content on Corrosion Behavior of X65 Pipeline Steel in Supercritical CO2 Fluids[J]. 中国腐蚀与防护学报, 2024, 44(3): 576-584.
[8] XU Yunfeng, WANG Shaofeng, HE Long, LIU Dong, HUANG Feng, LIU Jing. Effect of Eco Pickled Surface Treatment on Hydrogen Embrittlement Sensitivity of QStE700TM Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 691-699.
[9] ZHOU Long, LU Jun, DING Wenshan, LI Hao, TAO Tao, SHI Chao, SHAO Yawei, LIU Guangming. Effect of Different Phytates on Corrosion Behaviors of Carbon Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 669-678.
[10] ZHOU Lanxin, ZHANG Liping, TANG Yan, CHEN Keyu, ZHOU Jianjun, SHI Chao, SHAO Yawei, LIU Guangming. Preparation of Zinc Phytate and Its Effect on Corrosion Behavior of Carbon Steel[J]. 中国腐蚀与防护学报, 2024, 44(2): 396-404.
[11] ZHOU Wenbin, LI Mengran, ZHOU Xin, SUN Haijing, SUN Jie. Oil Soluble Mannich Base Corrosion Inhibitor for Corrosion Inhibition of Copper in Transformer Oil[J]. 中国腐蚀与防护学报, 2024, 44(2): 453-461.
[12] . Research on Hot Corrosion Behavior of Nickel Based Single Crystal High Temperature Alloy in Different Heat Treatment States[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[13] JIANG Bochen, LEI Yanhua, ZHANG Yuliang, LI Xiaofeng, LIU Tao, DONG Lihua. Research Progress on Application of Functional Superhydrophobic Coatings for Anti-icing in Polar Regions[J]. 中国腐蚀与防护学报, 2024, 44(1): 1-14.
[14] LI Shuang, DONG Lijin, ZHENG Huaibei, WU Chengchuan, WANG Hongli, LING Dong, WANG Qinying. Research Progress of Stress Corrosion Cracking of Ultra-high Strength Steels for Aircraft Landing Gear[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[15] XIAO Meng, WANG Qinying, ZHANG Xingshou, XI Yuchen, BAI Shulin, DONG Lijin, ZHANG Jin, YANG Junjie. Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
No Suggested Reading articles found!