Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (3): 658-668    DOI: 10.11902/1005.4537.2023.208
Current Issue | Archive | Adv Search |
Effect of Seawater Flow Velocity on Pitting Corrosion of 2205 Stainless Steel with Different Surface Treatments
XING Shaohua1, PENG Wenshan1(), QIAN Yao1,2, LI Xiangbo1, MA Li1, ZHANG Dalei3
1. National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
2. Qingdao Jimo District Bureau of Industry and Information Technology, Qingdao 266205, China
3. School of Materials Science and Engineering, China University of Petroleum(East China), Qingdao 266580, China
Cite this article: 

XING Shaohua, PENG Wenshan, QIAN Yao, LI Xiangbo, MA Li, ZHANG Dalei. Effect of Seawater Flow Velocity on Pitting Corrosion of 2205 Stainless Steel with Different Surface Treatments. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 658-668.

Download:  HTML  PDF(12438KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

2205 stainless steel is commonly used in pipeline systems. In the presence of flowing seawater the failure of passivation film on tubing can easily lead to accidents such as pipeline leakage. Therefore, it is of great significance to acquire the impact of flowing seawater on the pitting corrosion behavior of 2205 stainless steel with different surface treatments. Hence, 2205 stainless steel was firstly subjected to polish-treatment and passivation-treatment respectively, and then the pitting behavior of which in flowing seawater was assessed by means of electrochemical testing methods such as potentiodynamic polarization curve, electrochemical impedance spectroscopy, and Mott-Schottky curve as well as characterization of their morphology variation with corrosion process. It was found that there were obvious pits formed on the surface of either the polished or passivated steel, with pitting potentials ranging from 0.9 V to 1.2 V. The pitting resistance of the steel is higher in static seawater rather than in flowing seawater, but as the flow rate increases, the pitting resistance of the steel does not change significantly, however, the surface passivation film loses its re-passivation ability in flowing seawater. The passivation film on the surface of 2205 stainless steel exhibits two semiconductor characteristics: n-type and p-type, indicating that the passivation film presents a double-layer structure, mainly composed of oxides of Fe (outer portion) and Cr (inner portion). After passivation treatment, the pitting corrosion resistance of the steel increased, but the semiconductor properties of the passivation film did not show significant changes. The flowing seawater could reduce the pitting corrosion resistance of the steel, but the difference in the surface passivation film characteristics of the steel pre-treated by two methods could result in different sensitivity to pitting corrosion of the 2205 stainless steel in flowing seawaters.

Key words:  2205 stainless steel      seawater pipeline      erosion corrosion      electrochemistry      pitting corrosion      passivation film     
Received:  30 June 2023      32134.14.1005.4537.2023.208
ZTFLH:  TG172  
Corresponding Authors:  PENG Wenshan, E-mail: pengwenshan1386@126.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.208     OR     https://www.jcscp.org/EN/Y2024/V44/I3/658

Fig.1  Potentiodynamic polarization curves of 2205 stainless steel in seawater with different flow rates: (a) polishing surface, (b) passivation surface
Fig.2  Relationships between pitting potential and flow rate for 2205 stainless steel samples pretreated by polishing and passivation
Surface stateEp / VEb-Ep
Polishing0.9190.168
Passivation1.0160.182
Table 1  Pitting protection potential and hysteresis ring size for 2205 stainless steel in static seawater
Fig.3  Polarization curves of polished and passivated 2205 stainless steel samples in seawater with the flow rates of 0 m/s (a), 1 m/s (b), 2 m/s (c), 3 m/s (d), 4 m/s (e) and 5 m/s (f)
Fig.4  Nyquist (a), impedance module (b) and phase angle (c) plots of polished 2205 stainless steel in seawater with different flow rates
Fig.5  Equivalent circuit for fitting EIS of stainless steel sample
V / m·s-1nRt / Ω·cm2
00.923.90 × 106
10.923.70 × 106
20.923.67 × 106
30.923.88 × 106
40.924.01 × 106
50.923.77 × 106
Table 2  Fitting data of EIS of polished 2205 stainless steel in seawater with different flowing rates
Fig.6  Nyquist (a), impedance module (b) and phase angle (c) plots of passivated 2205 stainless steel in seawater with different flow rates
V / m·s-1nRt / Ω·cm2
00.934.08 × 106
10.933.82 × 106
20.933.52 × 106
30.934.05 × 106
40.934.09 × 106
50.933.71 × 106
Table 3  Fitting data of EIS of passivated 2205 stainless steel in seawater with different flow rates
Fig.7  Mott-Schottky curves of polished (a) and passivated (b) 2205 stainless steel samples in flowing seawater
Fig.8  Comparison of acceptor and donor densities of polished (a) and passivated (b) 2205 stainless steel samples in flowing seawater
Fig.9  Three-dimensional morphologies of pitting pits of polished samples in seawater with the flow rates of 0 m/s (a), 1 m/s (b), 3 m/s (c) and 5 m/s (d)
Fig.10  Three-dimensional morphologies of pitting pits of pre-passivated samples in seawater with the flow rates of 0 m/s (a), 1 m/s (b), 3 m/s (c) and 5 m/s (d)
Fig.11  SEM morphologies of pitting pits of polished 2205 stainless steel in seawater with the flow rates of 0 m/s (a), 1 m/s (b), 3 m/s (c) and 5 m/s (d)
V / m·s-1SiSNiFeCrMn
01.021.3923.3765.1023.371.53
10.98-4.6959.4121.951.27
30.881.344.9061.1222.601.51
51.101.175.0058.3820.931.48
Table 4  Elemental compositions of the surfaces of polished 2205 stainless steel samples after corrosion in flowing seawater
Fig.12  SEM morphologies of pitting pits of pre-passivated 2205 stainless steel in seawater with the flow rates of 0 m/s (a), 1 m/s (b), 3 m/s (c) and 5 m/s (d)
V / m·s-1SiSNiFeCrMnMo
00.75-4.4358.7018.841.231.38
11.180.924.2755.5017.920.951.20
30.63-4.0257.1418.021.211.27
50.58-4.2656.6817.400.791.26
Table 5  Elemental compositions of the surfaces of passivated 2205 stainless steel samples after corrosion in flowing seawater
1 Yang J W, Cai N, Jiang B, et al.Corrosion behavior of Ni, Cr-containning corrosion resistant steel in high temperature and high Cl- environment [J]. Corros. Prot., 2022, 43(4): 13
杨建炜, 蔡 宁, 姜 杉 等. 高温高Cl-环境中含Ni、Cr耐蚀钢的腐蚀行为 [J].腐蚀与防护, 2022, 43(4): 13
2 Hu J P, Liu Z Y, Hu S S, et al. Stress corrosion behavior of 304 stainless steel in simulated deep and shallow seawater environments [J]. Surf. Technol., 2015, 44(3): 9
胡建朋, 刘智勇, 胡山山 等. 304不锈钢在模拟深海和浅海环境中的应力腐蚀行为 [J]. 表面技术, 2015, 44(3): 9
3 Ren P W. Study of tribocorrosion of three different corrosion reisistance materials under deep-sea high pressure [D]. Beijing: University of Science and Technology Beijing, 2022
任鹏伟. 三类不同耐蚀性材料在深海高压下的磨蚀研究 [D]. 北京: 北京科技大学, 2022
4 Shao D X, Wu M, Xie F, et al. The research progress of corrosion properties of stainless steel in seawater [J]. J. Liaoning Shihua Univ., 2018, 38(1): 26
邵冬雪, 吴 明, 谢 飞 等. 不锈钢在海水中腐蚀特性研究进展 [J]. 辽宁石油化工大学学报, 2018, 38(1): 26
5 Li J D, Chen C, Zhang S G, et al. Research progress on localized corrosion behavior of stainless steel under different stress conditions [J]. Surf. Technol., 2021, 50(3): 101
李嘉栋, 陈 超, 张世贵 等. 不同应力条件下不锈钢局部腐蚀行为的研究进展 [J]. 表面技术, 2021, 50(3): 101
6 Cui L, Kang W Q, Wu P, et al. Study on erosion corrosion of 13Cr stainless steel under action of high-speed multiphase flow [J]. J. Xi'an Shiyou Univ. (Natl. Sci. Ed.), 2020, 35(3): 92
崔 璐, 康文泉, 吴 鹏 等. 多相高速流动环境中13Cr不锈钢冲刷腐蚀特性 [J]. 西安石油大学学报(自然科学版), 2020, 35(3): 92
7 Qiao Y X, Liu F H, Ren A, et al. Erosion-corrosion behavior of high nitrogen stainless steel and commercial 321 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 141
乔岩欣, 刘飞华, 任 爱 等. 高氮钢和321不锈钢的冲刷腐蚀行为 [J]. 中国腐蚀与防护学报, 2012, 32: 141
8 Yang Y, Hou X L, Li M C. Effect of vacuum pressure on the initiation and propagation of pitting corrosion of 2205 duplex stainless steel in concentrated seawater [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1023
doi: 10.1007/s40195-021-01329-8
9 Zeng H T, Yang Y, Liu L L, et al. Pitting and crevice corrosion evolution characteristics of 2205 duplex stainless steel in hot concentrated seawater [J]. J. Solid State Electrochem., 2021, 25: 1555
doi: 10.1007/s10008-021-04935-9
10 Le Manchet S, Robin E, Monnot M. Corrosion resistance of stainless steels and nickel alloys in seawater [A]. CORROSION 2021 [C]. Virtual, 2021.
11 Bhandari J, Lau S, Abbassi R, et al. Accelerated pitting corrosion test of 304 stainless steel using ASTM G48; Experimental investigation and concomitant challenges [J]. J. Loss Prevent. Process Ind., 2017, 47: 10
doi: 10.1016/j.jlp.2017.02.025
12 Ryan M P, Williams D E, Chater R, et al. Why stainless steel corrodes [J]. Nature, 2002, 415: 770
doi: 10.1038/415770a
13 Lü Y X. Analysis of Cl- corrosion resistance of high Mo super austenitic stainless steels [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 765
吕迎玺. 高Mo超级奥氏体不锈钢耐Cl-腐蚀性能分析 [J]. 中国腐蚀与防护学报, 2022, 42: 765
doi: 10.11902/1005.4537.2022.100
14 Shi L, Zheng Z J, Gao Y. Mechanism and research methods of pitting corrosion of stainless steels [J]. Mater. Rep., 2015, 29(23): 79
石 林, 郑志军, 高 岩. 不锈钢的点蚀机理及研究方法 [J]. 材料导报, 2015, 29(23): 79
15 Hoar T P, Mears D C, Rothwell G P. The relationships between anodic passivity, brightening and pitting [J]. Corros. Sci., 1965, 5: 279
doi: 10.1016/S0010-938X(65)90614-1
16 Marcus P, Maurice V, Strehblow H H. Localized corrosion (pitting): A model of passivity breakdown including the role of the oxide layer nanostructure [J]. Corros. Sci., 2008, 50: 2698
doi: 10.1016/j.corsci.2008.06.047
17 Zheng S J, Wang Y J, Zhang B, et al. Identification of MnCr2O4 nano-octahedron in catalysing pitting corrosion of austenitic stainless steels [J]. Acta Mater., 2010, 58: 5070
doi: 10.1016/j.actamat.2010.05.043
18 Fan X H, Yu Y, Zhang Z R, et al. Pitting and repassivation Behavior of 316L austenitic stainless steel under different potentials [J]. Surf. Technol., 2020, 49(7): 287
樊学华, 于 勇, 张子如 等. 316L奥氏体不锈钢在不同电位下的点蚀和再钝化行为研究 [J]. 表面技术, 2020, 49(7): 287
19 Zhang B, Liu B Y, Xue Z L, et al. Erosion resistance of 304 stainless steel in artificial marine environment at high temperature and high flow velocity [J]. Mater. Prot., 2018, 51(11): 25
张 斌, 柳秉毅, 薛忠亮 等. 304不锈钢在高温高流速模拟海水中的耐冲蚀性能 [J]. 材料保护, 2018, 51(11): 25
20 Deng Y S, Huang G Q. Corrosion behavior of cast stainless steels in seawater [J]. Equip. Environ. Eng., 2005, 2(2): 76
邓永生, 黄桂桥. 海水环境中铸造不锈钢的腐蚀行为 [J]. 装备环境工程, 2005, 2(2): 76
21 Wang X, Liu F, Li Y, et al. Corrosion behavior of B10 Cu-Ni alloy pipe in static and dynamic seawater [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 119
王 晓, 刘 峰, 李焰 等. 静态和动态海水中B10铜镍合金管的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43: 119
22 Wang H R, Yao P, Liu Y M, et al. Studies of corrosion and electrochemical properties of HDR duplex stainless steel as seawater tubes [J]. Corros. Prot., 2001, 22(1): 5
王洪仁, 姚 萍, 刘玉梅 等. 新型海水管系材料HDR双相不锈钢的腐蚀和电化学性能 [J]. 腐蚀与防护, 2001, 22(1): 5
23 Wang C. Study on the electrochemical surface modification of stainless steel and its mechanism of corrosion resistance [D]. Xiamen: Xiamen University, 2019
王 成. 不锈钢表面电化学处理及耐腐蚀机理研究 [D]. 厦门: 厦门大学, 2019
24 Zhang M L, Wang D, Wang X F, et al. Influence of Cl- concentrations on the corrosion behavior of 316L stainless steel in ocean environment [J]. Mater. Prot., 2019, 52(1): 34
张鸣伦, 王 丹, 王兴发 等. 海水环境中Cl-浓度对316L不锈钢腐蚀行为的影响 [J]. 材料保护, 2019, 52(1): 34
25 Sikora J, Sikora E, Macdonald D D. The electronic structure of the passive film on tungsten [J]. Electrochim. Acta, 2000, 45: 1875
doi: 10.1016/S0013-4686(99)00407-7
26 Lin Y H, Du R G, Hu R G, et al. A correlation study of corrosion resistance and semiconductor properties for the electrochemically modified passive film of stainless steel [J]. Acta Phys. Chim. Sin., 2005, 21: 740
doi: 10.3866/PKU.WHXB20050709
林玉华, 杜荣归, 胡融刚 等. 不锈钢钝化膜耐蚀性与半导体特性的关联研究 [J]. 物理化学学报, 2005, 21: 740
27 Geringer J, Macdonald D D. Modeling fretting-corrosion wear of 316L SS against poly (methyl methacrylate) with the point defect model: fundamental theory, assessment, and outlook [J]. Electrochim. Acta, 2012, 79(4): 17
doi: 10.1016/j.electacta.2012.06.028
28 Bi F Q, Zhou B, Wang Y. Effect of alloying on anti-corrosion performance of stainless steel: a review [J]. Mater. Rep., 2019, 33: 1206
毕凤琴, 周 帮, 王 勇. 合金化对不锈钢耐蚀性能影响的研究进展 [J]. 材料导报, 2019, 33: 1206
29 Wu C F, Wang X H, Zhang H L, et al. Effect of alloy elements on the mechanical properties and pitting corrosion resistance of 316LN austenitic stainless steel [J]. Chin. J. Eng., 2015, 37: 1157
吴从风, 王心禾, 张海龙 等. 合金元素对316LN不锈钢的力学性能和点蚀性能的影响 [J]. 工程科学学报, 2015, 37: 1157
[1] GENG Zhenzhen, ZHANG Yuzhu, DU Xiaojiang, WU Hanhui. Synergistic Effect of S2- and Cl- on Corrosion and Passivation Behavior of 316L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[2] ZHANG Chenglong, ZHANG Bin, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Corrosion Behavior of Medium Entropy CoCrNi-alloy in NH4Cl Solutions[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[3] MA Heng, TIAN Huiyun, LIU Yuxi, WANG Yuexiang, HE Kang, CUI Zhongyu, CUI Hongzhi. Corrosion Behavior of S420 Steel in Different Marine Zones[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[4] DAI Wei, LIU Yuanyuan, TU Wenrui, SUN Yangting, LI Jin, JIANG Yiming. Corrosion Behavior of Ag/Sn Galvanic Couple at Applied Potential[J]. 中国腐蚀与防护学报, 2024, 44(3): 700-706.
[5] FU Jiangyue, GUO Jianxi, YANG Yange, LENG Zhe, WANG Wen. Erosion-corrosion Behavior of a High Strength Low Alloy Steel in Flowing 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[6] WANG Tongtong, ZHANG Juanrui, GAO Yun, GAO Rongjie. Preparation of Lotus Root-like TiO2 Nanotube Arrays in NH4F-(NH4)2SO4 Composite Electrolyte and Its Photogenerated Cathodic Protection Performance[J]. 中国腐蚀与防护学报, 2024, 44(2): 389-395.
[7] LI Wenjie, CHE Xiaoyu, TANG Yongcun, LIU Guangming, TIAN Wenming, HE Hualin, LIU Chenhui. Effect of Plastic Deformation Processing on Corrosion Behavior of Pure Zinc in a Leaching Solution of Soil at Tianjin[J]. 中国腐蚀与防护学报, 2024, 44(2): 497-504.
[8] WANG Pengjie, SONG Yuhao, FAN Lin, DENG Kuanhai, LI Zhonghui, MEI Zongbin, GUO Lei, LIN Yuanhua. Inhibition of Q235 Steel in 1 mol/L HCl Solution by a New Efficient Imidazolium Schiff Base Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2024, 44(1): 59-70.
[9] XIONG Yiming, MEI Wan, WANG Zehua, YU Rui, XU Shiyao, WU Lei, ZHANG Xin. Corrosion Behavior of 5083 Al-alloy under Magnetic Field[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[10] ZHAO Guoxian, LIU Ranran, DING Langyong, ZHANG Siqi, GUO Menglong, WANG Yingchao. Effect of Temperature on CO2-inducedCorrosion Behavior of 5Cr Steel in a Simulated Oilfield Produced High-temperature and High-pressured Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[11] XING Shaohua, LIU Zhongye, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei. Galvanic Corrosion Behavior of ZCuSn5Pb5Zn5/B10 Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[12] REN Wankai, LIAN Zhouyang, ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying. Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[13] LIU Wei. Asymmetric Surface Configuration for Electrochemical Noise Measurement on Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[14] GAO Qiuying, ZENG Wenguang, WANG Heng, LIU Yuancong, HU Junying. Effect of Fluid Scouring on Sulfate Reducting Bacteria Induced Corrosion of Pipeline Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[15] PAN Dailong, SI Xiaodong, LV Jinhong. Effect of Flow Velocity on Flow Accelerated Corrosion Rate of Carbon Steel Elbow[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.
No Suggested Reading articles found!