Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (3): 645-657    DOI: 10.11902/1005.4537.2023.231
Current Issue | Archive | Adv Search |
Prpogation Mechanism of Microcracks Caused by Corrosion of Laser Cladded In625 Coating on Nodular Cast Iron in 3.5%NaCl Solution
DENG Shuangjiu, LI Chang(), YU Menghui, HAN Xing
School of Mechanical Engineering and Automation, University of Science and Technology of Liaoning, Anshan 114051, China
Cite this article: 

DENG Shuangjiu, LI Chang, YU Menghui, HAN Xing. Prpogation Mechanism of Microcracks Caused by Corrosion of Laser Cladded In625 Coating on Nodular Cast Iron in 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 645-657.

Download:  HTML  PDF(15485KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

IN625 coating was laser clad on the surface of QT600 nodular cast iron, and the microstructure and composition of the clad coating were characterized by means of optical microscope and scanning electron microscope with energy dispersive spectroscope. The electrochemical corrosion behavior of the IN625 clad QT600 nodular cast iron was examined in 3.5%NaCl solution. Meanwhile, a numerical model of the transient evolution of micro-crack growth induced by corrosion of IN625 laser cladding layer was established, considering the corrosion process induced by the existence of micro-cracks in the cladding layer working in a harsh environment. The transient evolution of ion concentration, ion migration, pH value, electrode potential and corrosion rate during corrosion were analyzed. The results show that the corrosion resistance of IN625 clad QT600 nodular cast iron is significantly superior to that of the bare QT600 nodular cast iron.

Key words:  laser cladding technology      IN625 cladding layer      microcracking      corrosion      electrochemical experiment     
Received:  26 July 2023      32134.14.1005.4537.2023.231
ZTFLH:  TG171  
Fund: Applied Basic Research Project of Liaoning Province(2023JH2/101300226)
Corresponding Authors:  LI Chang, E-mail: lichang2323-23@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.231     OR     https://www.jcscp.org/EN/Y2024/V44/I3/645

Fig.1  Microscopic cracks on the surface of the cladding layer
Fig.2  Morphologies of QT600 nodular cast iron (a) and IN625 alloy powders (b)
MaterialCSiMnMoCrPSNbFeNi
QT6003.252.730.350.20.20.050.02-Bal.0.6
IN6250.10.430.388.920.7--3.390.62Bal.
Table 1  Elemental compositions of QT600 nodular cast iron and IN625 alloy powder
Fig.3  Principle diagram of laser cladding technology
Fig.4  Cross-sectional morphology of IN625 cladding layer (a) and depth profiles of alloying elements (b)
Fig.5  Polarization curve fitting of QT600 substrate (a) and IN625 cladding layer (b)
Fig.6  Schematic diagram of micro-crack corrosion of IN625 cladding layer
Fig.7  Schematic diagram of microscopic cube
Fig.8  Meshing of corrosion induced expansion of the microcrack in IN625 cladding layer
Fig.9  Variations of Poisson's ratio (a), specific heat capacity (b), density (c), thermal conductivity (d), Young's modulus (e) and coefficient of thermal expansion (f) of IN625 cladding layer with temperature
Fig.10  pH change cloud maps of microcrack in IN625 cladding layer after corrosion for 0 d (a), 20 d (b), 40 d (c), 60 d (d), 80 d (e) and 100 d (f)
Fig.11  Data extraction lines at different locations
Fig.12  Variations of pH value at different locations of microcrack during corrosion: (a) center line position, (b) edge line position
Fig.13  Variations of electrode potential at different locations of microcrack during corrosion: (a) center line position, (b) edge line position
Fig.14  Crack growth rates at different locations of microcrack during corrosion: (a) center line position, (b) edge line position
Fig.15  Crack depths at different locations of microcrack during corrosion
Fig.16  Changes of Ni2+ concentration during corrosion for 0-100 d: (a) 0 d, (b) 20 d, (c) 40 d, (d) 60 d, (e) 80 d, (f) 100 d
Fig.17  Changes of Na+ concentration during corrosion for 0-100 d: (a) 0 d, (b) 20 d, (c) 40 d, (d) 60 d, (e) 80 d, (f) 100 d
Fig.18  Changes of Cl- concentration during corrosion for 0-100 d: (a) 0 d, (b) 20 d, (c) 40 d, (d) 60 d, (e) 80 d, (f) 100 d
Fig.19  Variations of Ni2+ (a, b), Na+ (c, d), and Cl- (e, f) concentrations with time at the center line position (a, c, e) and edge line position (b, d, f) of the microcrack
Fig.20  Analysis results of Ni2+ migration trajectory: (a) 0 d, (b) 20 d, (c) 40 d, (d) 60 d, (e) 80 d, (f) 100 d
Fig.21  Analysis results of Na+ migration trajectory: (a) 0 d, (b) 20 d, (c) 40 d, (d) 60 d, (e) 80 d, (f) 100 d
Fig.22  Analysis results of Cl- migration trajectory: (a) 0 d, (b) 20 d, (c) 40 d, (d) 60 d, (e) 80 d, (f) 100 d
1 Zhang J, Wu W N, Zhao L Z. Research progress and development trend of laser cladding [J]. Hot Work. Technol., 2013, 42(6): 131
张 坚, 吴文妮, 赵龙志. 激光熔覆研究现状及发展趋势 [J]. 热加工工艺, 2013, 42(6): 131
2 Chang G R, Liu L Y, Fu F X, et al. Research on corrosion resistance of Ni based alloy coating by laser cladding [J]. J. Xi’an Univ. (Nat. Sci. Ed.), 2017, 20(5): 91
畅庚榕, 刘立炎, 付福兴 等. 激光熔覆Ni基合金层耐腐蚀性研究 [J]. 西安文理学院学报(自然科学版), 2017, 20(5): 91
3 Mohammed S, Rajamure R S, Zhang Z, et al. Tailoring corrosion resistance of laser-cladded Ni/WC surface by adding rare earth elements [J]. Int. J. Adv. Manuf. Technol., 2018, 97: 4043
doi: 10.1007/s00170-018-2227-z
4 Guo Y, Ye Z, Yang W T, et al. Microstructure and salt spray corrosion resistance of laser-clad nickel-based and iron-based layers containing tungsten carbide [J]. Electroplat. Finish., 2019, 38: 1054
郭 岩, 叶 智, 杨文涛 等. 含碳化钨的镍基和铁基合金激光熔覆层的组织结构与耐盐雾腐蚀性能 [J]. 电镀与涂饰, 2019, 38: 1054
5 Fu F X, Cheng H, Feng J S, et al. Influence of laser scanning speed on corrosion resistance and hardness properties of Fe-Mn-Si-Cr-Ni-Co alloy coating [J]. Integr. Ferroelectr., 2019, 198: 109
doi: 10.1080/10584587.2019.1592583
6 Liu H F, Tan C K I, Wei Y F, et al. Laser-cladding and interface evolutions of Inconel 625 alloy on low alloy steel substrate upon heat and chemical treatments [J]. Surf. Coat. Technol., 2020, 404: 126607
doi: 10.1016/j.surfcoat.2020.126607
7 Wang R, Ouyang C Y, Li Q H, et al. Study of the microstructure and corrosion properties of a Ni-based alloy coating deposited onto the surface of ductile cast iron using high-speed laser cladding [J]. Materials (Basel), 2022, 15: 1643
doi: 10.3390/ma15051643
8 Han X, Li C, Zhang D C, et al. Numerical simulation and experiment of quenching process of 35CrMnSi by disk laser [J]. J. Laser Appl., 2021, 33: 022004
9 Situmorang R S, Seri O, Kawai H. Estimation of exchange current density for hydrogen evolution reaction of copper electrode by using the differentiating polarization method [J]. Appl. Surf. Sci., 2020, 505: 144300
doi: 10.1016/j.apsusc.2019.144300
10 Marshall R S, Katona R M, Melia M A, et al. Pit stability predictions of additively manufactured SS316 surfaces using finite element analysis [J]. J. Electrochem. Soc., 2022, 169: 021506
11 Lu Y X, Li X, Jing H Y, et al. Finite element simulation of carbon steel welded joint corrosion [J]. Trans. China Weld. Inst., 2018, 39(5): 10
路永新, 李 霄, 荆洪阳 等. 碳钢焊接接头腐蚀的有限元模拟 [J]. 焊接学报, 2018, 39(5): 10
12 Ding Q M, Qin Y X, Cui Y Y. Galvanic corrosion of aircraft components in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 455
丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2020, 40: 455
doi: 10.11902/1005.4537.2019.202
13 Ding Q M, Qin Y X, Cui Y Y. Investigation of corrosion behavior of 3Cr steel in 3.5% NaCl solution based on COMSOL multiphysics simulation research [J]. Mater. Prot., 2020, 53(1): 37
丁清苗, 秦永祥, 崔艳雨. 基于COMSOL Multiphysics的3Cr钢在 3.5%NaCl溶液中的腐蚀行为研究 [J]. 材料保护, 2020, 53(1): 37
14 Zhang M F. Pitting corrosion and its numerical simulation based on peridynamics [D]. Xi'an: Northwestern Polytechnical University, 2017
张毛飞. 基于近场动力学的点蚀及其数值仿真 [D]. 西安: 西北工业大学, 2017
15 Liu R J, Wheeler M F, Yotov I. On the spatial formulation of discontinuous Galerkin methods for finite elastoplasticity [J]. Comput. Methods Appl. Mech. Eng., 2013, 253: 219
doi: 10.1016/j.cma.2012.07.015
16 Zhang L, Xu W J, Long J, et al. Surface roughening analysis of cold drawn tube based on macro-micro coupling finite element method [J]. J. Mater. Process. Technol., 2015, 224: 189
doi: 10.1016/j.jmatprotec.2015.05.009
17 Wu N. Effect of microstructure and initiation defect on small fatigue crack initiation and propagation of Ni-based superalloy GH4169 [D]. Shanghai: East China University of Science and Technology, 2016
吴 楠. 微观组织和初始缺陷对镍基合金GH4169疲劳裂纹萌生及扩展行为的影响 [D]. 上海: 华东理工大学, 2016
18 He F J, Zhou H M, Li K, et al. Numerical analysis and experimental verification of melt pool evolution during laser cladding of 40CrNi2Si2MoVA steel [J]. J. Therm. Spray Technol., 2023, 32: 1416
doi: 10.1007/s11666-023-01544-y
19 Dong B W, Peng G Y, Wu Z P, et al. A CALPHAD-MD coupled method to reveal the strengthening mechanism in precipitation-strengthening Cu-Ni-Al alloy with evolving microstructures [J]. Int. J. Plast., 2023, 162: 103540
doi: 10.1016/j.ijplas.2023.103540
[1] LI Chan, WANG Qingtian, YANG Chenggang, ZHANG Xianwei, HAN Dongao, LIU Yuwei, LIU Zhiyong. Corrosion Behavior of 904L Super-austenitic Stainless Steel in Simulated Primary Water in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[2] ZHANG Zhaoyi, ZHOU Xuejie, CHEN Hao, WU Jun, CHEN Zhibiao, CHEN Zhijian. Corrosion Behavior of Two Steels CCSA and Q235B in Changjiang Freshwater Surroundings[J]. 中国腐蚀与防护学报, 2024, 44(3): 735-744.
[3] ZHANG Ming, GONG Ning, ZHANG Bo, HUO Hongbo, LI Haonan, ZHONG Xiankang. Evaluation of Tubing Service Life Based on Corrosion Prediction and Strength Calculation[J]. 中国腐蚀与防护学报, 2024, 44(3): 781-788.
[4] XIE Hui, YU Chao, HUA Jing, JIANG Xiu. Effect of NH+4 Concentration on Corrosion Behavior of N80 Steel in CO2-saturated 3%NaCl Solutions[J]. 中国腐蚀与防护学报, 2024, 44(3): 745-754.
[5] XING Shaohua, PENG Wenshan, QIAN Yao, LI Xiangbo, MA Li, ZHANG Dalei. Effect of Seawater Flow Velocity on Pitting Corrosion of 2205 Stainless Steel with Different Surface Treatments[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[6] SUN Jiayu, PENG Wenshan, XING Shaohua. Combined Effect of Stress and Dissolved Oxygen on Corrosion Behavior of Ni-Cr-Mo-V High Strength Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 755-764.
[7] LONG Wujian, TANG Jie, LUO Qiling, QIU Zhanghong, WANG Hailong. Corrosion Inhibition Performance of Biomass-derived Carbon Dots on Q235 Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 807-814.
[8] ZHOU Long, LU Jun, DING Wenshan, LI Hao, TAO Tao, SHI Chao, SHAO Yawei, LIU Guangming. Effect of Different Phytates on Corrosion Behaviors of Carbon Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 669-678.
[9] GENG Zhenzhen, ZHANG Yuzhu, DU Xiaojiang, WU Hanhui. Synergistic Effect of S2- and Cl- on Corrosion and Passivation Behavior of 316L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[10] DING Yuzhi, CAO Jinxin, CAO Fengting, LI Tao, TAO Jiantao, WANG Tiegang, GAO Guangyao, FAN Qixiang. Research Progress of Risk-based Inspection Technology in Petrochemical Industry[J]. 中国腐蚀与防护学报, 2024, 44(3): 553-566.
[11] HU Qi, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Hot Corrosion Behavior of Inconel 718 Without and With Aluminide Coating in Air Beneath a Thin Film of Salt Mixture of Na2SO4 + 5%NaCl[J]. 中国腐蚀与防护学报, 2024, 44(3): 623-634.
[12] ZHANG Chenglong, ZHANG Bin, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Corrosion Behavior of Medium Entropy CoCrNi-alloy in NH4Cl Solutions[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[13] CEN Yuanyao, LIAO Guangmeng, ZHU Yuqin, ZHAO Fangchao, LIU Cong, HE Jianxin, ZHOU Kun. Monitoring Technology for Stress Corrosion Crack Propagation of Al-alloy Based on Optical Fiber Bragg Grating[J]. 中国腐蚀与防护学报, 2024, 44(3): 815-822.
[14] MA Heng, TIAN Huiyun, LIU Yuxi, WANG Yuexiang, HE Kang, CUI Zhongyu, CUI Hongzhi. Corrosion Behavior of S420 Steel in Different Marine Zones[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[15] XU Jiaxin, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Effect of Coating Process Temperatures on Hot Corrosion Behavior Induced by Deposit of Sulfates Salts in Air at 750oC for CVD Aluminized Coatings on K452 Superalloy[J]. 中国腐蚀与防护学报, 2024, 44(3): 612-622.
No Suggested Reading articles found!