|
|
|
| Initial Corrosion Behavior of 3Cr Alloy Steel in Urea Assisted Heavy Oil Steam Huff and Puff Environments |
ZHANG Yunjun1, JIANG Youwei1( ), ZHANG Zhongyi1, LV Naixin2, CHEN Junwei1, LIAN Guofeng1 |
1.State Key Laboratory of Enhanced Oil&Gas Recovery, Research Institute of Petroleum Exploration & Development, PetroChina Co., Ltd., Beijing 100083, China 2.Tubular Goods Research Institute, CNPC, Xi'an 710077, China |
|
Cite this article:
ZHANG Yunjun, JIANG Youwei, ZHANG Zhongyi, LV Naixin, CHEN Junwei, LIAN Guofeng. Initial Corrosion Behavior of 3Cr Alloy Steel in Urea Assisted Heavy Oil Steam Huff and Puff Environments. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 480-488.
|
|
|
Abstract The initial corrosion behavior of 3Cr alloy steel in urea assisted heavy oil steam huff and puff environments was studied by means of mass loss measurement, macroscopic morphology observation, SEM, EDS, XRD and XPS. The results show that the initial corrosion of 3Cr alloy steel in urea assisted heavy oil steam huff and puff environment is a synergistic corrosion of CO2 (acid gas) and NH3 (alkaline gas) in high temperature steam, showing uniform corrosion characteristics. The corrosion products are mainly FeCO3. When the concentration of urea solution is in the range between 10% and 20%, with the increase of the concentration of urea solution, the amount and compactness of corrosion products all increase. When the concentration of urea solution higher than 30%, the adhesion of the corrosion product scale to the steel substrate becomes weaker with the increase of the concentration of urea solution, as a result, obvious spallation of the formed scales may emerge. If there not crude oil exists in the wellbore environment of the urea assisted steam huff and puff production well, the average corrosion rate of 3Cr alloy steel is higher than the oilfield corrosion control index 0.076 mm/a when the concentration of urea solution is greater than 10%, so that this operating condition is not recommended. In the presence of crude oil, the corrosion rate of 3Cr alloy steel is greater than 0.076 mm/a for 30% urea solution, apparently which cannot meet the requirements of wellbore corrosion control in production wells, therefore, this operating condition is not recommended too. Anyhow, the average corrosion rate of 3Cr alloy steel with crude oil is lower than that without crude oil. The incorporation of crude oil has certain corrosion inhibition effect due to the geometric covering effect. Therefore, it is suggested that the concentration of urea solution should not exceed 10% when designing the site operation scheme.
|
|
Received: 29 June 2023
32134.14.1005.4537.2023.206
|
|
|
| Fund: National Science and Technology Special Funds of China(2016ZX05012-001) |
Corresponding Authors:
JIANG Youwei, E-mail: jiangyw@petrochina.com.cn
|
| 1 |
Ren S R, Niu B L, Wang G J, et al. Numerical simulation on urea-assisted steam flooding for heavy oil reservoir[J]. Spec. Oil Gas Reservoirs, 2012, 19(3): 111
|
|
任韶然, 牛保伦, 王冠杰 等. 稠油油藏尿素辅助蒸汽驱油数值模拟研究[J]. 特种油气藏, 2012, 19(3): 111
|
| 2 |
Li W H, Liu P C, Shen D H, et al. Three-dimension physical simulation experiment of urea-foam assisted steam flooding in heavy oil reservoir[J]. Pet. Geol. Recovery Effic., 2015, 22(4): 118
|
|
李文会, 刘鹏程, 沈德煌 等. 稠油油藏尿素泡沫辅助蒸汽驱三维物理模拟实验[J]. 油气地质与采收率, 2015, 22(4): 118
|
| 3 |
Shen D H, Xie J J, Wang X C. Experimental study and application of urea in steam flooding of heavy oil reservoir[J]. Spec. Oil Gas Reservoirs, 2005, 12(2): 85
|
|
沈德煌, 谢建军, 王晓春. 尿素在稠油油藏注蒸汽开发中的实验研究及应用[J]. 特种油气藏, 2005, 12(2): 85
|
| 4 |
Yu Q S, Muhe T, Dong H, et al. Urea-assisted steam stimulation based on orthogonal design of heavy oil reservoir in Xinjiang oilfield[J]. Pet. Geol. Eng., 2019, 33(6): 77
|
|
于庆森, 木合塔尔, 董宏 等. 新疆油田稠油油藏基于正交设计的尿素辅助蒸汽吞吐研究[J]. 石油地质与工程, 2019, 33(6): 77
|
| 5 |
Kermani M B, Morshed A B. Carbon dioxide corrosion in oil and gas production—A compendium[J]. Corrosion, 2003, 59: 659
doi: 10.5006/1.3277596
|
| 6 |
Abd El-Lateef H M, Abbasov V M, Aliyeva L I, et al. Corrosion protection of steel pipelines against CO2 corrosion-A review[J]. Chem. J., 2012, 2: 52
|
| 7 |
Sim S, Bocher F, Cole I S, et al. Investigating the effect of water content in supercritical CO2 as relevant to the corrosion of carbon capture and storage pipelines[J]. Corrosion, 2014, 70: 185
doi: 10.5006/0944
|
| 8 |
Shi S Z, Dong B J, Zeng D Z, et al. Simulation of the effect of corrosion performance of four types under CO2-assisted steam flooding conditions[J]. J. Southwest Pet. Univ. (Sci. Technol. Ed.), 2018, 40(4): 162
|
|
石善志, 董宝军, 曾德智 等. CO2辅助蒸汽驱对四种钢的腐蚀性能影响模拟[J]. 西南石油大学学报(自然科学版), 2018, 40(4):162
doi: 10.11885/j.issn.1674-5086.2017.05.02.02
|
| 9 |
Chen C F, Zhao G X, Yan M L, et al. Characteristics of CO2 corrosion scales on Cr-containing N80 steel[J]. J. Chin. Soc. Corros. Prot., 2002, 22: 335
|
|
陈长风, 赵国仙, 严密林 等. 含Cr油套管钢CO2腐蚀产物膜特征[J]. 中国腐蚀与防护学报, 2002, 22: 335
|
| 10 |
Jia Z J, Du C W, Liu Z Y, et al. Effect of pH on the corrosion and electrochemical behavior of 3Cr steel in CO2 saturated NaCl solution[J]. Chin. J. Mater. Res., 2011, 25: 39
|
|
贾志军, 杜翠薇, 刘智勇 等. 3Cr低合金钢在含饱和CO2的NaCl溶液中的腐蚀电化学行为[J]. 材料研究学报, 2011, 25: 39
|
| 11 |
Guo S Q, Xu L N, Chang W, et al. Experimental study of CO2 corrosion of 3Cr pipe line steel[J]. Acta Metall. Sin., 2011, 47: 1067
|
|
郭少强, 许立宁, 常 炜 等. 3Cr管线钢CO2腐蚀实验研究[J]. 金属学报, 2011, 47: 1067
doi: 10.3724/SP.J.1037.2011.00048
|
| 12 |
Wang K, Zhang Y Q, Yin Z F, et al. Corrosion behavior of N80 and 3Cr tubing steels in CO2 flooding environment[J]. Corros. Prot., 2015, 36: 706
|
|
王 珂, 张永强, 尹志福 等. N80和3Cr油管钢在CO2驱油环境中的腐蚀行为[J]. 腐蚀与防护, 2015, 36: 706
|
| 13 |
Wei L, Pang X L, Gao K W. Corrosion of low alloy steel and stainless steel in supercritical CO2/H2O/H2S systems[J]. Corros. Sci., 2016, 111: 637
doi: 10.1016/j.corsci.2016.06.003
|
| 14 |
Wu Y Y, Shi S Z, Huang J B, et al. Evaluation of corrosion resistance for low alloy steels in high temperature steam environment with CO2 [J]. Chem. Eng. Oil Gas, 2017, 46(4): 77
|
|
邬元月, 石善志, 黄建波 等. 含CO2高温蒸汽环境中低合金钢耐腐蚀性能评价[J]. 石油与天然气化工, 2017, 46(4): 77
|
| 15 |
Zou J N, Pang X L, Gao K W. Crevice corrosion of X70 and 3Cr low alloy steels under supercritical CO2 condition[J]. Acta Metall. Sin., 2018, 54: 537
|
|
邹佳男, 庞晓露, 高克玮. 低合金钢X70和3Cr在超临界CO2环境中的缝隙腐蚀[J]. 金属学报, 2018, 54: 537
doi: 10.11900/0412.1961.2017.00353
|
| 16 |
de Sanctis O, Gómez L, Pellegri N, et al. Behaviour in hot ammonia atmosphere of SiO2-coated stainless steels produced by a sol-gel procedure[J]. Surf. Coat. Technol., 1995, 70: 251
doi: 10.1016/0257-8972(94)02274-T
|
| 17 |
Al-Hashem A, Carew J. The use of electrochemical impedance spectroscopy to study the effect of chlorine and ammonia residuals on the corrosion of copper-based and nickel-based alloys in seawater[J]. Desalination, 2002, 150: 255
doi: 10.1016/S0011-9164(02)00981-5
|
| 18 |
Zhou W, Hua F, Gong C B, et al. Cause analysis of corrosion in rich ammonia system of sour water stripper and countermeasures[J]. Corros. Prot. Petrochem. Ind., 2013, 30(1): 40
|
|
周 威, 花 飞, 龚朝兵 等. 污水汽提装置富氨气系统腐蚀原因及对策[J]. 石油化工腐蚀与防护, 2013, 30(1): 40
|
| 19 |
Niu Z Y, Cheng B, Zhao L N. Corrosion law on lining of urea reactor[J]. China Spec. Equip. Saf., 2012, 28(10): 10
|
|
牛兆岩, 程 冰, 赵路宁. 尿素合成塔内衬腐蚀规律研究[J]. 中国特种设备安全, 2012, 28(10): 10
|
| 20 |
Tian L B, Zhu Z P, Zhang C L, et al. Urea induced corrosion of 15CrMo steel for water cooled wall tubes in coal-fired power plants[J]. J. Chin. Soc. Corros. Prot., 2019, 39: 114
|
|
田龙标, 朱志平, 张春雷 等. 尿素对燃煤电厂水冷壁管15CrMo钢腐蚀特性研究[J]. 中国腐蚀与防护学报, 2019, 39: 114
doi: 10.11902/1005.4537.2018.067
|
| 21 |
Huan Y Q. Corrosion and anti-corrosion measures of high-pressure urea equipment[J]. Chem. Fertil. Des., 2020, 58(1): 30
|
|
宦月庆. 尿素高压设备的腐蚀及防腐措施[J]. 化肥设计, 2020, 58(1): 30
|
| 22 |
Huang A R, Zhang W, WANG X L, et al. Corrosion behavior of ferritic stainless steel in high temperature urea environment[J]. Chin. J. Mater. Res., 2020, 34: 712
doi: 10.11901/1005.3093.2020.065
|
|
黄安然, 张 伟, 王学林 等. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34: 712
doi: 10.11901/1005.3093.2020.065
|
| 23 |
Wang X L, Huang A R, Li M X, et al. The significant roles of Nb and Mo on enhancement of high temperature urea corrosion resistance in ferritic stainless steel[J]. Mater. Lett., 2020, 269: 127660
doi: 10.1016/j.matlet.2020.127660
|
| 24 |
Xu L N, Wang B, Zhu J Y, et al. Effect of Cr content on the corrosion performance of low-Cr alloy steel in a CO2 environment[J]. Appl. Surf. Sci., 2016, 379: 39
doi: 10.1016/j.apsusc.2016.04.049
|
| 25 |
Tian Y Q, Fu A Q, Hu J G, et al. Corrosion behavior of low Cr steel in CO2/H2S environment[J]. Surf. Technol., 2019, 48(5): 49
|
|
田永强, 付安庆, 胡建国 等. 低Cr钢在CO2/H2S环境中的腐蚀行为研究[J]. 表面技术, 2019, 48(5): 49
|
| 26 |
Chen W T, Fan S J, Chen L T, et al. Problem analysis and countermeasures of urea hydrdysis anmoia production system[J]. Clean Coal Technol., 2023, 29(suppl.2) : 103
|
|
陈文通, 樊帅军, 陈柳潼 等. 尿素水解制氨系统问题分析与对策[J]. 洁净煤技术, 2023, 29(): 103
|
| 27 |
Zhang B, Zhang X Y, Li M H, et al. Problem analysis for transportation of urea hydrolysis production gas for thermal power plants[J]. Therm. Power Gener., 2015, 44(11): 114
|
|
张 波, 张向宇, 李明浩 等. 火电厂尿素水解产品气输送问题分析[J]. 热力发电, 2015, 44(11): 114
|
| 28 |
Lu X. Modeling and pilot test of the urea hydrolysis to ammonia for gas denitration[D]. Beijing: North China Electric Power University (Beijing), 2016
|
|
陆 续. 尿素水解制氨过程模型与实验研究[D]. 北京: 华北电力大学(北京), 2016
|
| 29 |
National Energy Administration. SY/T 5329-2012 Water quality standard and practice for analysis of oilfield injecting waters in clastic reservoirs[S]. Beijing: Petroleum Industry Press, 2012: 5
|
|
国家能源局. SY/T 5329-2012 碎屑岩油藏注水水质指标及分析方法[S]. 北京: 石油工业出版社, 2012: 5
|
| 30 |
Li M J. Analysis on equipment corrosion and its measures against it in Urea plant[J]. Mod. Chem. Ind., 2006, 26(11): 54
|
|
李民杰. 尿素设备腐蚀的影响因素分析及防腐措施[J]. 现代化工, 2006, 26(11): 54
|
| 31 |
Zhang Y J, Lyu N X, Shen D H, et al. Corrosion behavior of N80 steel in urea assisted heavy oil steam huff and puff environment[J]. Surf. Technol., 2023, 52(11): 269
|
|
张运军, 吕乃欣, 沈德煌 等. N80钢在尿素辅助稠油蒸汽吞吐环境中的腐蚀行为研究[J], 表面技术, 2023, 52(11): 269
|
| 32 |
Ji E Y, Li A K, Zhang Y H, et al. Effect of crude oils on corrosion behavior of N80 steel[J]. Mater. Prot., 2004, 37(5): 42
|
|
姬鄂豫, 李爱魁, 张银华 等. 原油对碳钢腐蚀行为影响的研究[J]. 材料保护, 2004, 37(5): 42
|
| 33 |
Sun C, Sun J B, Wang Y, et al. The effect of crude oil on the chemical properties of aqueous phase was studied by electrochemical method[A]. 2014 National Academic Exchange on Corrosion Electrochemistry and Test Methods Abstract Collection[C]. Harbin, 2014: 54
|
|
孙 冲, 孙建波, 王 勇 等. 电化学方法研究原油对水相化学性质的影响[A]. 2014年全国腐蚀电化学及测试方法学术交流会摘要集[C]. 哈尔滨, 2014: 54
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|