Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (2): 471-479    DOI: 10.11902/1005.4537.2023.170
Current Issue | Archive | Adv Search |
Effect of Magnetic Field on Corrosion Behavior of L360 Pipeline Steel and Welded Joints in 3.5%NaCl Solution
DENG Zhibin1,2, HU Xiao1,3, LIU Yingyan1, YUE Hang4, ZHANG Qian1, TANG Haiping1,2, LU Rui3()
1.College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan 618307, China
2.Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Guanghan 618307, China
3.Aviation Fuel Management Division, Civil Aviation Flight University of China, Guanghan 618307, China
4.PetroChina Yunnan Marketing Company, Kunming 650000, China
Cite this article: 

DENG Zhibin, HU Xiao, LIU Yingyan, YUE Hang, ZHANG Qian, TANG Haiping, LU Rui. Effect of Magnetic Field on Corrosion Behavior of L360 Pipeline Steel and Welded Joints in 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 471-479.

Download:  HTML  PDF(15133KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To clarify the influence of magnetic fields on the corrosion behavior of oil pipelines of L360 steel in service, the corrosion behavior of L360 pipeline steel and its welded joints in 3.5%NaCl solution by applied magnetic field of various intensities was studied via electrochemical tests and corrosion morphology characterization. The results indicate that as the magnetic field intensity increases, the charge transfer resistance of L360 pipeline steel and its welded joints initially increases and then decreases, while the corrosion current density initially decreases and then increases. Corrosion is inhibited by a lower intensity magnetic field (60 mT), while it is accelerated by a higher intensity magnetic field (120 mT). Moreover, by the same applied magnetic field intensity, the corrosion rate of the welded joints is higher than that of the base metal. It is proposed that the existed gradient magnetic field force may be favor the adsorption of metal ions at the electrode interface, resulting in the formation of a corrosion product film that hinders the corrosion process. Under the influence of a high-intensity magnetic field, the Lorentz force can disrupt the corrosion product film, accelerating ion diffusion and subsequently accelerating the corrosion of the steel.

Key words:  magnetic field      L360 pipeline steel      welded joint      3.5%NaCl solution      corrosion behavior     
Received:  22 May 2023      32134.14.1005.4537.2023.170
ZTFLH:  TE988  
Fund: Fundamental Research Funds for the Central Universities(J2020-124)
Corresponding Authors:  LU Rui, E-mail: 95555846@qq.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.170     OR     https://www.jcscp.org/EN/Y2024/V44/I2/471

Fig.1  Experimental device diagram
Fig.2  Polarization curves of L360 pipeline steel in 3.5%NaCl solution under 0-120 mT magnetic fields: (a) BM, (b) WJS
SpecimenMF strength / mTEcorr / VIcorr / A·cm-2βaβc
BM0-0.724628.0933 × 10-60.0691350.10839
60-0.743347.1909 × 10-60.0748290.081773
120-0.721158.4428 × 10-60.0768190.10125
WJS0-0.720858.4982 × 10-60.0634270.1378
60-0.729767.6877 × 10-60.0664690.12187
120-0.712899.2359 × 10-60.0753290.13953
Table 1  Fitting parameters of the polarization curves
Fig.3  Corrosion rates of BM and WJS for L360 pipeline steel in 3.5%NaCl solution under different magnetic fields
Fig.4  Nyquist (a, d), impedance module (b, e) and phase angle (c, f) plots of BM (a-c) and WJS (d-f) for L360 pipeline steel under different magnetic fields
Fig.5  Equivalent circuit diagram
SpecimenMF strength / mTRS / Ω·cm2nCPE,Y0 / Ω-1·cm-2·s-1Rct / kΩ·cm2
BM06.330.7981.24 × 10-31.12
605.760.7501.55 × 10-31.20
1205.390.7761.36 × 10-31.09
WJS06.040.7731.35 × 10-31.09
606.140.7791.33 × 10-31.26
1206.720.7970.97 × 10-30.97
Table 2  Fitting parameters of EIS
Fig.6  Macroscopic morphologies of BM (a-c) and WJS (d-f) samples after corrosion under magnetic fields of 0 mT (a, d), 60 mT (b, e) and 120 mT (c, f)
Fig.7  Macroscopic morphologies of BM (a-c) and WJS (d-f) for L360 pipeline steel after removal of corrosion products formed under different magnetic fields of 0 mT (a, d), 60 mT (b, e) and 120 mT (c, f)
Fig.8  Microscopic morphologies of BM (a-c) and WJS (d-f) for L360 pipeline steel after corrosion under magnetic fields of 0 mT (a, d), 60 mT (b, e) and 120 mT (c, f)
Fig.9  Microscopic morphologies of BM (a-c) and WJS (d-f) for L360 pipeline steel after removal of corrosion products formed under magnetic fields of 0 mT(a, d), 60 mT (b, e) and 120 mT (c, f)
Fig.10  EDS analysis results of corrosion product layers formed on BM (a-c) and WJS (d-f) under magnetic fields of 0 mT (a, d), 60 mT (b, e) and 120 mT (c, f)
Fig.11  XPS analysis results of corrosion products formed on BM (a) and WJS (b) under magnetic field of 120 mT
SpecimenMF strength / mTOFe
BM024.40068.400
6010.20080.200
12029.67061.838
WJS020.48070.330
607.00081.300
12033.26766.234
Table 3  EDS results of corrosion product films
1 Wu M, Xie F, Chen X, et al. Research progress and thinking on corrosion failure of buried oil and gas pipelines[J]. Oil Gas Storage Trans., 2022, 41: 712
吴 明, 谢 飞, 陈 旭 等. 埋地油气管道腐蚀失效研究进展及思考[J]. 油气储运, 2022, 41: 712
2 Wang C, Chen J M. The effect of strong magnetic field on corrosion behavior of iron[J]. J. Chin. Soc. Corros. Prot., 1994, 8: 123
王 晨, 陈俊明. 磁场对铁腐蚀过程中阴极析氢和阳极溶解的影响[J]. 中国腐蚀与防护学报, 1994, 8: 123
3 Hui H J, Dai Q S, Chen K, et al. Effect of magnetic field on corrosion of X60 pipeline steel in soil of Changsha area[J]. Corros. Prot., 2019, 40: 474
惠海军, 戴乾生, 陈 凯 等. 磁场对X60钢材料在长沙地区土壤中腐蚀行为的影响[J]. 腐蚀与防护, 2019, 40: 474
4 Ouadah M, Touhami O, Ibtiouen R, et al. Corrosive effects of the electromagnetic induction caused by the high voltage power lines on buried X70 steel pipelines[J]. Int. J. Electr. Power Energy Syst., 2017, 91: 34
doi: 10.1016/j.ijepes.2017.03.005
5 Ou Z Y, Han Z D, Cen J S, et al. Present status and perspectives of inspection technology for buried pipeline[J]. Meas. Control Technol., 2023, 42(6): 1
欧正宇, 韩赞东, 岑佶松 等. 埋地管道检测技术现状与展望[J]. 测控技术, 2023, 42(6): 1
6 Jackson J E, Lasseigne-Jackson A N, Sanchez F J, et al. The influence of magnetization on corrosion in pipeline steels[A]. 2006 International Pipeline Conference[C]. Calgary, 2006: 921
7 Chen J, Chiu T M, Cai W J. Effects of magnetic field on the corrosion reactions of A572 steel in NaCl aqueous solution[J]. J. Mater. Eng. Perform., 2022, 31: 9294
doi: 10.1007/s11665-022-06920-3
8 Zhao S L, You Z F, Zhang X W, et al. Magnetic field effects on the corrosion and electrochemical corrosion of Fe83Ga17 alloy[J]. Mater. Charact., 2021, 174: 110994
doi: 10.1016/j.matchar.2021.110994
9 Obi J T, Mejeha I M, Okeoma K B. The inhibitive effect of magnetic fields on mild steel corrosion in acidic media[J]. Zaštita Mater., 2023, 64: 30
10 Jiang C, Ma B J. Effect of magnetic field on the corrosion characteristics of AZ31B magnesium alloy in NaCl solutions with two different concentrations[J]. Mater. Prot., 2021, 54(1): 7
姜超, 马保吉. 磁场对AZ31B镁合金在2种浓度NaCl溶液中腐蚀特性的影响[J]. 材料保护, 2021, 54(1): 7
11 Hu J, Dong C F, Li X G, et al. Effects of applied magnetic field on corrosion of beryllium copper in NaCl solution[J]. J. Mater. Sci. Technol., 2010, 26: 355
12 Parapurath S, Ravikumar A, Vahdati N, et al. Effect of magnetic field on the corrosion of API-5L-X65 steel using electrochemical methods in a flow loop[J]. Appl. Sci., 2021, 11: 9329
doi: 10.3390/app11199329
13 Zhang K N, Wu M, Xie F, et al. Effect of magnetic field on corrosion of X80 pipeline steel in meadow soil at Shenyang area[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 148
张康南, 吴明, 谢飞 等. 磁场对X80管线钢在沈阳草甸土中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37: 148
doi: 10.11902/1005.4537.2016.001
14 Wang D, Li T J, Xie F, et al. Effect of magnetic field on the electrochemical corrosion behavior of X80 pipeline steel[J]. Constr. Build. Mater., 2022, 350: 128897
doi: 10.1016/j.conbuildmat.2022.128897
15 Yang Y, Zhang Q B, Zhu W C, et al. Effect of magnetic field on corrosion behavior of X52 pipeline steel in NaCl solution[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 501
杨 永, 张庆保, 朱万成 等. 磁场对NaCl溶液中X52管线钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42: 501
16 Yang Y, Luo Y L, Sun M, et al. Effect of magnetic field on corrosion behavior of X52 pipeline steel in simulated soil solution[J]. Int. J. Electrochem. Sci., 2021, 16: 211010
doi: 10.20964/2021.10.33
17 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 16545-2015 Corrosion of metals and alloys—Removal of corrosion products from corrosion test specimens[S]. Beijing: Standards Press of China, 2016
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 16545-2015 金属和合金的腐蚀 腐蚀试样上腐蚀产物的清除[S]. 北京: 中国标准出版社, 2016
18 Tian G, Wei A J, Huo F Y, et al. An experimental study of the magnetic field on metal corrosion[J]. Pipeline Tech. Equip., 2010, (1): 50
田 光, 魏爱军, 霍富永 等. 磁场对金属腐蚀的实验研究[J]. 管道技术与设备, 2010, (1): 50
19 Zhu L Y. Microbiological influenced corrosion of X80 pipeline and weld microstructure[D]. Shenyang: Shenyang Ligong University, 2020
祝李洋. X80管线钢及其焊缝组织的微生物腐蚀[D]. 沈阳: 沈阳理工大学, 2020
20 Qin Q Y, Xu J, Wei B X, et al. Biotic enhancement of Desulfovibrio desulfuricans on multi-factor influenced corrosion of X80 steel in saline soil[J]. Corros. Sci., 2022, 200: 110228
doi: 10.1016/j.corsci.2022.110228
21 Ma Y T, Li Y, Wang F H. The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment[J]. Mater. Chem. Phys., 2008, 112: 844
doi: 10.1016/j.matchemphys.2008.06.066
22 Sugae K, Kamimura T, Asakura R, et al. Electrochemical reduction and re-oxidation behavior of α, β, and γ-iron oxy-hydroxide films on electrodes[J]. Mater. Corros., 2019, 70: 187
23 Liu G X. Study on corrosion behavior of X100 steel in marine dry-wet cycle environment[D]. Qingdao: China University of Petroleum (East China), 2019
刘广鑫. 海洋干湿交替环境中X100钢腐蚀行为研究[D]. 青岛: 中国石油大学(华东), 2019
24 Zhao S Z, Wang Y X, Zhao Y X, et al. The effect of magnetic field pretreatment on the corrosion behavior of carbon steel in static seawater[J]. RSC Adv., 2020, 10: 2060
doi: 10.1039/c9ra09079g pmid: 35494611
25 Sueptitz R, Tschulik K, Uhlemann M, et al. Magnetic field effects on the active dissolution of iron[J]. Electrochim. Acta, 2011, 56: 5866
doi: 10.1016/j.electacta.2011.04.126
26 Wang X P, Zhao J J, Hu Y P, et al. Effects of the Lorentz force and the gradient magnetic force on the anodic dissolution of nickel in HNO3 + NaCl solution[J]. Electrochim. Acta, 2014, 117: 113
doi: 10.1016/j.electacta.2013.11.100
27 Sharma S K, Maheshwari S. A review on welding of high strength oil and gas pipeline steels[J]. J. Nat. Gas Sci. Eng., 2017, 38: 203
doi: 10.1016/j.jngse.2016.12.039
[1] XIONG Yiming, MEI Wan, WANG Zehua, YU Rui, XU Shiyao, WU Lei, ZHANG Xin. Corrosion Behavior of 5083 Al-alloy under Magnetic Field[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[2] SONG Dongdong, WAN Hongxia, XU Dong, ZHOU Qian. Influence of Rolling on Corrosion Behavior of ZM5 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[3] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[4] QU Weiwei, CHEN Zehao, PEI Yanling, LI Shusuo, WANG Fuhui. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[5] ZHONG Jiaxin, GUAN Lei, LI Yu, HUANG Jiayong, SHI Lei. Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[6] LIU Hao, GUO Xiaokai, WANG Wei, WU Liankui, CAO Fahe, SUN Qingqing. Effect of Ultrasonic Shot Peening on Microstructure and Properties of a 7075 Al-alloy Rod[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[7] HE Jing, YU Hang, FU Ziying, YUE Penghui. Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[8] REN Huangwei, LIAO Bokai, CUI Linjing, XIANG Tengfei. Effect of Liquid Film Thickness on Corrosion Behavior of Solid Slippery Surface under Thin Liquid Film[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[9] WANG Honglun, YANG Hua, CAI Hui, LI Bowen. Corrosion Behavior of Q235 Steel by Outdoor Exposure and under Shelter in Atmosphere of Hainan Coastal[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[10] HUANG Jiazhen, HUANG Tao, YANG Lijing, JI Dengping, DING He, WEI Yi, SONG Zhenlun. Electrochemical Properties and Offshore Corrosion Behavior of SAF 2304 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[11] WAN Hongxia, LIU Chonglin, WANG Zian, LIU Ru, CHEN Changfeng. Corrosion Behavior of P110S Oil Casing Steel in Sulfur Containing Environment[J]. 中国腐蚀与防护学报, 2023, 43(2): 371-376.
[12] ZHANG Quanfu, SONG Lei, WANG Jian, GUO Zhenyu, REN Naidong, ZHAO Jianqi, WU Weikang, CHENG Weili. Mechanical Properties and Corrosion Behavior of an Extruded Dilute Mg-alloy Mg-0.5Bi-0.5Sn-0.5Ca[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[13] ZHAO Yi, CAO Jingyi, FANG Zhigang, FENG Yafei, HAN Zhuo, MENG Fandi, WANG Zhaodong, WANG Fuhui. Corrosion Behavior of A517Gr.Q Marine Steel in Simulated Corrosive Condition of Marine Splashing Zone[J]. 中国腐蚀与防护学报, 2022, 42(6): 921-928.
[14] HUANG Lianpeng, ZHANG Xin, XIONG Yiming, TAO Jiahao, WANG Zehua, ZHOU Zehua. Corrosion Behavior of Al-3.0Mg-xRE/Fe Alloys Under Magnetic Field of Different Intensities[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[15] WANG Xinyu, HUANG Feng, LIU Haixia, YUAN Wei, LIU Jing. Corrosion Resistance of Welded Joints of Q690 Bainite Bridge Steel in Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2022, 42(5): 826-832.
No Suggested Reading articles found!