|
|
Effect of Magnetic Field on Corrosion Behavior of L360 Pipeline Steel and Welded Joints in 3.5%NaCl Solution |
DENG Zhibin1,2, HU Xiao1,3, LIU Yingyan1, YUE Hang4, ZHANG Qian1, TANG Haiping1,2, LU Rui3( ) |
1.College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan 618307, China 2.Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Guanghan 618307, China 3.Aviation Fuel Management Division, Civil Aviation Flight University of China, Guanghan 618307, China 4.PetroChina Yunnan Marketing Company, Kunming 650000, China |
|
Cite this article:
DENG Zhibin, HU Xiao, LIU Yingyan, YUE Hang, ZHANG Qian, TANG Haiping, LU Rui. Effect of Magnetic Field on Corrosion Behavior of L360 Pipeline Steel and Welded Joints in 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 471-479.
|
Abstract To clarify the influence of magnetic fields on the corrosion behavior of oil pipelines of L360 steel in service, the corrosion behavior of L360 pipeline steel and its welded joints in 3.5%NaCl solution by applied magnetic field of various intensities was studied via electrochemical tests and corrosion morphology characterization. The results indicate that as the magnetic field intensity increases, the charge transfer resistance of L360 pipeline steel and its welded joints initially increases and then decreases, while the corrosion current density initially decreases and then increases. Corrosion is inhibited by a lower intensity magnetic field (60 mT), while it is accelerated by a higher intensity magnetic field (120 mT). Moreover, by the same applied magnetic field intensity, the corrosion rate of the welded joints is higher than that of the base metal. It is proposed that the existed gradient magnetic field force may be favor the adsorption of metal ions at the electrode interface, resulting in the formation of a corrosion product film that hinders the corrosion process. Under the influence of a high-intensity magnetic field, the Lorentz force can disrupt the corrosion product film, accelerating ion diffusion and subsequently accelerating the corrosion of the steel.
|
Received: 22 May 2023
32134.14.1005.4537.2023.170
|
|
Fund: Fundamental Research Funds for the Central Universities(J2020-124) |
Corresponding Authors:
LU Rui, E-mail: 95555846@qq.com
|
1 |
Wu M, Xie F, Chen X, et al. Research progress and thinking on corrosion failure of buried oil and gas pipelines[J]. Oil Gas Storage Trans., 2022, 41: 712
|
|
吴 明, 谢 飞, 陈 旭 等. 埋地油气管道腐蚀失效研究进展及思考[J]. 油气储运, 2022, 41: 712
|
2 |
Wang C, Chen J M. The effect of strong magnetic field on corrosion behavior of iron[J]. J. Chin. Soc. Corros. Prot., 1994, 8: 123
|
|
王 晨, 陈俊明. 磁场对铁腐蚀过程中阴极析氢和阳极溶解的影响[J]. 中国腐蚀与防护学报, 1994, 8: 123
|
3 |
Hui H J, Dai Q S, Chen K, et al. Effect of magnetic field on corrosion of X60 pipeline steel in soil of Changsha area[J]. Corros. Prot., 2019, 40: 474
|
|
惠海军, 戴乾生, 陈 凯 等. 磁场对X60钢材料在长沙地区土壤中腐蚀行为的影响[J]. 腐蚀与防护, 2019, 40: 474
|
4 |
Ouadah M, Touhami O, Ibtiouen R, et al. Corrosive effects of the electromagnetic induction caused by the high voltage power lines on buried X70 steel pipelines[J]. Int. J. Electr. Power Energy Syst., 2017, 91: 34
doi: 10.1016/j.ijepes.2017.03.005
|
5 |
Ou Z Y, Han Z D, Cen J S, et al. Present status and perspectives of inspection technology for buried pipeline[J]. Meas. Control Technol., 2023, 42(6): 1
|
|
欧正宇, 韩赞东, 岑佶松 等. 埋地管道检测技术现状与展望[J]. 测控技术, 2023, 42(6): 1
|
6 |
Jackson J E, Lasseigne-Jackson A N, Sanchez F J, et al. The influence of magnetization on corrosion in pipeline steels[A]. 2006 International Pipeline Conference[C]. Calgary, 2006: 921
|
7 |
Chen J, Chiu T M, Cai W J. Effects of magnetic field on the corrosion reactions of A572 steel in NaCl aqueous solution[J]. J. Mater. Eng. Perform., 2022, 31: 9294
doi: 10.1007/s11665-022-06920-3
|
8 |
Zhao S L, You Z F, Zhang X W, et al. Magnetic field effects on the corrosion and electrochemical corrosion of Fe83Ga17 alloy[J]. Mater. Charact., 2021, 174: 110994
doi: 10.1016/j.matchar.2021.110994
|
9 |
Obi J T, Mejeha I M, Okeoma K B. The inhibitive effect of magnetic fields on mild steel corrosion in acidic media[J]. Zaštita Mater., 2023, 64: 30
|
10 |
Jiang C, Ma B J. Effect of magnetic field on the corrosion characteristics of AZ31B magnesium alloy in NaCl solutions with two different concentrations[J]. Mater. Prot., 2021, 54(1): 7
|
|
姜超, 马保吉. 磁场对AZ31B镁合金在2种浓度NaCl溶液中腐蚀特性的影响[J]. 材料保护, 2021, 54(1): 7
|
11 |
Hu J, Dong C F, Li X G, et al. Effects of applied magnetic field on corrosion of beryllium copper in NaCl solution[J]. J. Mater. Sci. Technol., 2010, 26: 355
|
12 |
Parapurath S, Ravikumar A, Vahdati N, et al. Effect of magnetic field on the corrosion of API-5L-X65 steel using electrochemical methods in a flow loop[J]. Appl. Sci., 2021, 11: 9329
doi: 10.3390/app11199329
|
13 |
Zhang K N, Wu M, Xie F, et al. Effect of magnetic field on corrosion of X80 pipeline steel in meadow soil at Shenyang area[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 148
|
|
张康南, 吴明, 谢飞 等. 磁场对X80管线钢在沈阳草甸土中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37: 148
doi: 10.11902/1005.4537.2016.001
|
14 |
Wang D, Li T J, Xie F, et al. Effect of magnetic field on the electrochemical corrosion behavior of X80 pipeline steel[J]. Constr. Build. Mater., 2022, 350: 128897
doi: 10.1016/j.conbuildmat.2022.128897
|
15 |
Yang Y, Zhang Q B, Zhu W C, et al. Effect of magnetic field on corrosion behavior of X52 pipeline steel in NaCl solution[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 501
|
|
杨 永, 张庆保, 朱万成 等. 磁场对NaCl溶液中X52管线钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42: 501
|
16 |
Yang Y, Luo Y L, Sun M, et al. Effect of magnetic field on corrosion behavior of X52 pipeline steel in simulated soil solution[J]. Int. J. Electrochem. Sci., 2021, 16: 211010
doi: 10.20964/2021.10.33
|
17 |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 16545-2015 Corrosion of metals and alloys—Removal of corrosion products from corrosion test specimens[S]. Beijing: Standards Press of China, 2016
|
|
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 16545-2015 金属和合金的腐蚀 腐蚀试样上腐蚀产物的清除[S]. 北京: 中国标准出版社, 2016
|
18 |
Tian G, Wei A J, Huo F Y, et al. An experimental study of the magnetic field on metal corrosion[J]. Pipeline Tech. Equip., 2010, (1): 50
|
|
田 光, 魏爱军, 霍富永 等. 磁场对金属腐蚀的实验研究[J]. 管道技术与设备, 2010, (1): 50
|
19 |
Zhu L Y. Microbiological influenced corrosion of X80 pipeline and weld microstructure[D]. Shenyang: Shenyang Ligong University, 2020
|
|
祝李洋. X80管线钢及其焊缝组织的微生物腐蚀[D]. 沈阳: 沈阳理工大学, 2020
|
20 |
Qin Q Y, Xu J, Wei B X, et al. Biotic enhancement of Desulfovibrio desulfuricans on multi-factor influenced corrosion of X80 steel in saline soil[J]. Corros. Sci., 2022, 200: 110228
doi: 10.1016/j.corsci.2022.110228
|
21 |
Ma Y T, Li Y, Wang F H. The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment[J]. Mater. Chem. Phys., 2008, 112: 844
doi: 10.1016/j.matchemphys.2008.06.066
|
22 |
Sugae K, Kamimura T, Asakura R, et al. Electrochemical reduction and re-oxidation behavior of α, β, and γ-iron oxy-hydroxide films on electrodes[J]. Mater. Corros., 2019, 70: 187
|
23 |
Liu G X. Study on corrosion behavior of X100 steel in marine dry-wet cycle environment[D]. Qingdao: China University of Petroleum (East China), 2019
|
|
刘广鑫. 海洋干湿交替环境中X100钢腐蚀行为研究[D]. 青岛: 中国石油大学(华东), 2019
|
24 |
Zhao S Z, Wang Y X, Zhao Y X, et al. The effect of magnetic field pretreatment on the corrosion behavior of carbon steel in static seawater[J]. RSC Adv., 2020, 10: 2060
doi: 10.1039/c9ra09079g
pmid: 35494611
|
25 |
Sueptitz R, Tschulik K, Uhlemann M, et al. Magnetic field effects on the active dissolution of iron[J]. Electrochim. Acta, 2011, 56: 5866
doi: 10.1016/j.electacta.2011.04.126
|
26 |
Wang X P, Zhao J J, Hu Y P, et al. Effects of the Lorentz force and the gradient magnetic force on the anodic dissolution of nickel in HNO3 + NaCl solution[J]. Electrochim. Acta, 2014, 117: 113
doi: 10.1016/j.electacta.2013.11.100
|
27 |
Sharma S K, Maheshwari S. A review on welding of high strength oil and gas pipeline steels[J]. J. Nat. Gas Sci. Eng., 2017, 38: 203
doi: 10.1016/j.jngse.2016.12.039
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|