Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (4): 795-802    DOI: 10.11902/1005.4537.2023.161
Current Issue | Archive | Adv Search |
Drawing of Atmospheric Corrosion Map of Carbon Steel and Galvanized Steel for Power Grid
HAO Wenkui1, CHEN Xin1, XU Lingling2, HAN Yu1, CHEN Yun1, HUANG Luyao1(), ZHU Zhixiang1, YANG Bingkun1, WANG Xiaofang1, ZHANG Qiang1
1.State Key Laboratory of Advanced Power Transmission Technology, State Grid Smart Grid Research Institute Co., Ltd., Beijing 102209, China
2.HVDC Technical Center of State Grid Corporation of China, Beijing 100052, China
Download:  HTML  PDF(1216KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Atmospheric corrosion is ubiquitous but varies a lot with varying climates and weather conditions at different test sites. Categorizing the atmospheric corrosivity and drawing atmospheric corrosion map with high precision remain key interest for different industries. In this study, atmospheric corrosion maps of carbon steel and galvanized steel for state gird corporation of China were constructed by inverse distance weighting (IDW) interpolation algorithm based on both the measured corrosion rates of coupons exposed at 2393 inland test stations and calculated corrosion rates from a prevalent dose-response function in 2918 sites in coastal regions. A chloride ion diffusion model in coastal region is also proposed to better predict corrosion rates of carbon steel and galvanized steel in coastal regions by using the dose response functions (DRFs) presented in ISO 9223. Cross-validation results demonstrated that the prediction accuracy of IDW interpolation algorithm of carbon steel and galvanized steel were 85.3% and 85.9%. The atmospheric corrosion maps show that the area, where C4-CX severe corrosion occurs for carbon steel and galvanized steel, accounts for 6.01% (462770 km2) and 5.25% (404250 km2) of the total area of the evaluation, respectively. The atmospheric corrosion map of the assessed area can be used to improve our capacity for corrosion protection, operation maintenance, and life prediction for outdoor engineering materials in severe corrosion area.

Key words:  carbon steel      galvanized steel      chloride ion diffusion model      atmospheric corrosion map     
Received:  11 May 2023      32134.14.1005.4537.2023.161
ZTFLH:  TG172  
Fund: Science and Technology Project of the Headquarters of State Grid Corporation of China(5200-202058470A-0-0-00)
Corresponding Authors:  HUANG Luyao, E-mail: hly_0531@163.com   

Cite this article: 

HAO Wenkui, CHEN Xin, XU Lingling, HAN Yu, CHEN Yun, HUANG Luyao, ZHU Zhixiang, YANG Bingkun, WANG Xiaofang, ZHANG Qiang. Drawing of Atmospheric Corrosion Map of Carbon Steel and Galvanized Steel for Power Grid. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 795-802.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.161     OR     https://www.jcscp.org/EN/Y2023/V43/I4/795

Station

Annual average temperature

/ °C

Annual average relative humidity

Annual average SO2 deposition

/ mg·m-2·d-1

LiaoningDalian11.859.9%16.8
Lvshun11.261.7%17.4
Yingkou10.860.3%20.5
Huludao10.654.9%19
HebeiQinhuangdao14.558.2%24.6
Tangshan14.256.4%20.1
Cangzhou14.258%23.2
TianjinTianjin15.954.6%16.9
ShandongWeihai15.465.9%20.9
Qingdao14.660.2%27
JiangsuLianyungang16.271%15.9
Yancheng16.469.3%17
Nantong115.972.9%17.9
Nantong21667.5%16.2
ShanghaiShanghai17.473.5%11.7
ZhejiangZhoushan17.675.6%12
Ningbo118.476.2%9.6
Ningbo218.377.5%8.9
Taizhou118.976.9%11
Taizhou218.277.3%10.7
Wenzhou1876.8%10.5
FujianFuzhou19.875%10.2
Putian20.476.3%10.6
Quanzhou20.674.8%9.4
Xiamen21.277.1%8.8
Table 1  Annual average values of corrosion factors collected from monitoring stations
Station

Distance to the coastline

km

Annual Cl- deposition

mg·m-2·d-1

XiamenDalianWeihaiAverage
10.01195182.2178.9185.4
20.198.37/108103.2
31.758.14/54.656.4
4421.5427.94/24.7
5733.13/33.933.5
6831.1618.21/24.7
71514.6513.0912.1313.29
8308.226.38.167.56
Table 2  Deposition rate of Cl- for environment monitor stations along the distance to the coastline
Corrosion categoryCorrosion rate of metals (rcorr / g·m-2·a-1)
Carbon steelZinc
C1rcorr≤10rcorr≤0.7
C210< rcorr≤2000.7< rcorr≤5
C3200< rcorr≤4005< rcorr≤15
C4400< rcorr≤65015< rcorr≤30
C5650< rcorr≤150030< rcorr≤60
CX1500< rcorr≤550060< rcorr≤180
Table 3  Corrosion rate of carbon steel and galvanized steel for the first year of exposure for the different corrosion category
Fig.1  Results of corrosion categories of carbon steel (a) and galvanized steel (b) according to ISO 9223
Fig.2  Cl- diffusion model in coastal region
Fig.3  Atmospheric corrosion map of carbon steel for power grid with p values of 1 (a), 2 (b), 3 (c) and 4 (d)
Fig.4  Atmospheric corrosion map of galvanized steel for power grid with p values of 1 (a), 2 (b), 3 (c) and 4 (d)
Materialp valueRME

MAE

μm·a-1

RMSE

μm·a-1

Carbon steel127.08%0.2610.327
225.16%0.2390.298
328.01%0.2420.337
429.76%0.2690.352
Galvanized steel129.17%0.2890.318
226.65%0.2560.309
327.99%0.2740.321
428.76%0.2930.347
Table 4  RME, MAE and RMSE of interpolation results by cross validation with different p values
MaterialCategoryp=1p=2p=3p=4
differenceNumberProportionNumberProportionNumberProportionNumberProportion
Carbon steelConsistent category57181.6%59785.3%58483.4%57281.7%
One category difference9513.6%7711.0%8912.7%9713.9%
Two categories difference344.8%263.7%273.9%314.4%
Galvanized steelConsistent category58183.0%60185.9%58583.6%57381.9%
One category difference9113.0%7510.7%8612.3%9413.4%
Two categories difference284.0%243.4%294.1%334.7%
Table 5  Statistics of corrosion categories of carbon steel and galvanized steel prediction results by cross validation
Carbon steelGalvanized steel
Corrosion category

Area

km2

Proportion

Area

km2

Proportion
C11316701.71%1378301.79%
C2375221048.73%379225049.25%
C3335335043.55%336567043.71%
C44088305.31%3349504.35%
C5400400.52%446600.58%
CX139000.18%246400.32%
Table 6  The area and proportion of different corrosion
1 Xia X J, Jin Y, Qiao H W, et al. Survey on corrosion of power transmission and transformation equipment [J]. Corros. Sci. Prot. Technol., 2019, 31: 121
夏晓健, 金 焱, 乔汉文 等. 输变电设备腐蚀状况调查与分析 [J]. 腐蚀科学与防护技术, 2019, 31: 121
2 Li L M, Zhang J, Bian Y F, et al. Atmospheric corrosion characteristics and regularity of the Q235, 40Cr steels commonly-used in power grid equipment in Anhui Province [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 535
李乐民, 张 洁, 卞亚飞 等. 安徽省内电网设备常用Q235和40Cr钢大气腐蚀特性及其规律 [J]. 中国腐蚀与防护学报, 2023, 43: 535
doi: 10.11902/1005.4537.2022.201
3 Wang J, Chen J J, Xie Y, et al. Evaluation of environmental factors related with atmosphere corrosivity in Hunan Province by atmospheric corrosion monitoring technique [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 487
王 军, 陈军君, 谢 亿 等. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定 [J]. 中国腐蚀与防护学报, 2021, 41: 487
4 Fan Z B, Li X G, Wang X M, et al. Review of regional atmospheric corrosion mapping technologys [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 29
樊志彬, 李辛庚, 王晓明 等. 区域性大气腐蚀图绘制技术研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 29
5 Pongsaksawad W, Klomjit P, Khamsuk P, et al. Chloride distribution model and corrosion map of structural steels for tropical climate in Thailand [J]. Sci. Total Environ., 2021, 787: 147465
doi: 10.1016/j.scitotenv.2021.147465
6 Chen H C, Yu G C, Li H X, et al. Development of atmospheric corrosion map in Shenyang [J]. Corros. Sci. Prot. Technol., 1992, 4: 195
陈鸿川, 于国才, 李洪锡 等. 沈阳市大气腐蚀图研制 [J]. 腐蚀科学与防护技术, 1992, 4: 195
7 Fan Z B, Li X G, Jiang B, et al. Mapping atmospheric corrosivity in Shandong [J]. Water Air Soil Pollut., 2020, 231: 569
doi: 10.1007/s11270-020-04939-7
8 Huang J C. Mapping the atmospheric corrosion level of southern power grid—establishment of dose-response function and optimization of mapping method [D]. Guangzhou: South China University of Technology, 2019
黄俊聪. 南方电网区域大气腐蚀等级图绘制—剂量响应函数建立及绘图方法优化 [D]. 广州: 华南理工大学, 2019
9 Vera R, Puentes M, Araya R, et al. Atmospheric corrosion map year of exposure of Chile: results after one [J]. Rev. Constr., 2012, 11: 61
10 Kumar V, Sil A. Rubric assessment and spatial zonal mapping of atmospheric corrosion of steel in India [J]. Corrosion, 2021, 77: 795
doi: 10.5006/3787
11 Tidblad J, Kucera V, Mikhailov A A, et al. UN ECE ICP materials: dose-response functions on dry and wet acid deposition effects after 8 years of exposure [J]. Water Air Soil Pollut., 2001, 130, 1457
doi: 10.1023/A:1013965030909
12 Castañeda A A, Corvo F, Fernández D, et al. Outdoor-indoor atmospheric corrosion in a coastal wind farm located in a tropical island [J]. Eng. J., 2017, 21, 43
doi: 10.4186/ej
13 Li X L. Reviews on investigation networks for atmospheric corrosion and suggestions on coming development [J]. Mater. Prot., 2000, 33(1): 20
李兴濂. 我国大气腐蚀网站试验研究回顾及发展建议 [J]. 材料保护, 2000, 33(1): 20
14 Tang Q H, Zhang X Y. Mapping of typical atmospheric corrosion at home and abroad [J]. Equip. Environ. Eng., 2010, 7(4): 81
唐其环, 张先勇. 国内外典型大气腐蚀图及其绘制 [J]. 装备环境工程, 2010, 7(4): 81
15 Cole I S, Ganther W D, Paterson D A, et al. Holistic model for atmospheric corrosion: part 2-experimental measurement of deposition of marine salts in a number of long range studies [J]. Corros. Eng. Sci. Technol., 2003, 38: 259
doi: 10.1179/147842203225008886
16 Chen H, Cui H Y, He Z B, et al. Influence of chloride deposition rate on rust layer protectiveness and corrosion severity of mild steel in tropical coastal atmosphere [J]. Mater. Chem. Phys., 2021, 259: 123971
doi: 10.1016/j.matchemphys.2020.123971
[1] ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun. Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[2] WANG Changgang, DANIEL Enobong Felix, LI Chao, DONG Junhua, YANG Hua, ZHANG Dongjiu. Corrosion Mechanisms of Carbon Steel- and Stainless Steel-bolt Fasteners in Marine Environments[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[3] XIA Xiaojian, WAN Xinyuan, CHEN Yunxiang, HAN Jiceng, CHEN Yiyang, YAN Kanghua, LIN Deyuan, CHEN Tianpeng, ZUO Xiaomei, SUN Baozhuang, CHENG Xuequn. Effect of Heat Treatments on Corrosion Behavior of 3Cr Low Carbon Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
[4] WANG Jin, NING Peidong, LIU Qianqian, CHEN Nana, ZHANG Xin, XIAO Kui. Corrosion Behavior of Galvanized Steel in a Simulated Marine Atmospheric Environment[J]. 中国腐蚀与防护学报, 2023, 43(3): 578-586.
[5] LUO Weiping, LUO Xue, SHI Yueting, WANG Xinchao, ZHANG Shengtao, GAO Fang, LI Hongru. Preparation and Corrosion Inhibition of Super Hydrophobic Adsorption Film of Lotus Leaf Extract on Mild Steel[J]. 中国腐蚀与防护学报, 2022, 42(6): 903-912.
[6] XU Ping, ZHAO Meihui, BAI Pengkai. Effect of Hydroxyethylidene Diphosphonic Acid on Iron Bacteria Induced Corrosion of Carbon Steel in Circulating Cooling Water[J]. 中国腐蚀与防护学报, 2022, 42(6): 988-994.
[7] XUE Fang, LIU Liangyu, TAN Long. Aerobic Corrosion Process of Q235 Steel in NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2022, 42(5): 771-778.
[8] WAN Ye, SONG Fangling, LI Lijun. Corrosion Characteristics of Carbon Steel in Simulated Marine Atmospheres[J]. 中国腐蚀与防护学报, 2022, 42(5): 851-855.
[9] CHEN Jiaqi, HOU Daolin, XIAO Han, GAO Yuwei, DONG Sheying. Corrosion Inhibition on Carbon Steel in Acidic Solution by Carbon Dots Prepared from Waste Longan Shells[J]. 中国腐蚀与防护学报, 2022, 42(4): 629-637.
[10] WEN Jiaxin, ZHANG Xin, LIU Yunxia, ZHOU Yongfu, LIU Kejian. Preparation and Performance of Smart Coating Doped with Nanocontainers of BTA@MSNs-SO3H-PDDA for Anti-corrosion of Carbon Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 309-316.
[11] WANG Zhigao, HAI Chao, JIANG Jie, LAN Xinsheng, DU Cuiwei, LI Xiaogang. Corrosion Behavior of Q235 Steels in Atmosphere at Deyang District for one Year[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[12] ZHANG Fei, WANG Haitao, HE Yongjun, ZHANG Tiansui, LIU Hongfang. Case Analysis of Microbial Corrosion in Product Oil Pipeline[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[13] CAO Jingyi, FANG Zhigang, LI Liang, FENG Yafei, WANG Xingqi, SHOU Haiming, YANG Yange, CHU Guangzhe, YIN Wenchang. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Fresh Water and Salt Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[14] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[15] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
No Suggested Reading articles found!