Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (4): 803-811    DOI: 10.11902/1005.4537.2023.149
Current Issue | Archive | Adv Search |
Effect of Ce on Microstructure and Corrosion Resistance of Zn-0.6Cu-0.3Ti Alloy
NI Ya1, SHI Fangchang1(), QI Jiqiu2
1.Jiangsu CUMT Dazheng Surface Engineering Technology CO., Ltd., Xuzhou 221000, China
2.School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China
Download:  HTML  PDF(4542KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A series of cast Ce-containing Zn-alloys Zn-0.6Cu-0.3Ti-(0.3-0.6)Ce was prepared, and the effect of Ce addition on the microstructure and corrosion resistance of Zn-0.6Cu-0.3Ti alloy were investigated by means of X-ray diffractometer, scanning electron microscope and electrochemical corrosion test. The results showed that due to the addition of the rare earth Ce, CeZn5 micron particles emerged in the alloys, which were distributed inside the Zn matrix or at phase boundaries, promoting the growth of the Zn matrix as dendrites and refining the Zn dendrites and secondary dendrites. Correspondingly, the free-corrosion current density of Zn-0.6Cu-0.3Ti alloy decreased rapidly from 2.76×10-3 A/cm2 to 5.85×10-4 A/cm2 after the doping of 0.3% Ce. The effect of Ce content on the corrosion properties of Zn-Cu-Ti-Ce alloy becomes weaker as the corrosion time increases. The impedance spectra of the alloy containing Ce has only one capacitive arc, in the early stage of corrosion, the influence of Ce content on the radius of the capacitive arc is small, with the extension of corrosion time, the influence of Ce becomes more and more obvious, and the overall trend is increasing.

Key words:  Zn-Cu-Ti alloys and coating      element Ce doping      metallographic characteristic      corrosion resistance     
Received:  08 May 2023      32134.14.1005.4537.2023.149
ZTFLH:  TG174  
Corresponding Authors:  SHI Fangchang, E-mail: 843337412@qq.com     E-mail:  843337412@qq.com

Cite this article: 

NI Ya, SHI Fangchang, QI Jiqiu. Effect of Ce on Microstructure and Corrosion Resistance of Zn-0.6Cu-0.3Ti Alloy. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 803-811.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.149     OR     https://www.jcscp.org/EN/Y2023/V43/I4/803

SampleCuTiCeZn
Zn-0.6Cu-0.3Ti0.60.3-Bal.
Zn-0.6Cu-0.3Ti-0.3Ce0.60.30.3Bal.
Zn-0.6Cu-0.3Ti-0.45Ce0.60.30.45Bal.
Zn-0.6Cu-0.3Ti-0.6Ce0.60.30.6Bal.
Table 1  Chemical composition of samples
Fig.1  XRD patterns of Zn-0.6Cu-0.3Ti-Ce alloys: (a) global diffraction peak shifts to the right, (b) comparison of diffraction peak deviation degree with different Ce content
Fig.2  Metallographic structures of Zn-0.6Cu-0.3Ti-Ce alloys: (a) 0 Ce, (b) 0.3 Ce, (c) 0.45 Ce, (d) 0.6 Ce
Fig.3  SEM surface morphology of Zn-0.6Cu-0.3Ti-0.3Ce alloy (a) and EDS results of of the points A (b), B (c) and C (d) marked in Fig.3a, surface image (e) and EPMA elemental mappings of Zn (f), Cu (g), Ti (h) and Ce (i) in the square frame marked in Fig.3e
Fig.4  TEM images and EDS results of Zn-0.6Cu-0.3Ti-0.3Ce alloy: (a, f) microstructure and morphology, (b, c) enlarged views of the red and yellow areas in Fig.4a, (d) diffraction spots of the black phase at point A in Fig.4b, (e) high resolution image of the red circle in Fig.4c, (g) diffraction spots of the phase B in Fig.4f, (h) high resolution image of the phase B in Fig.4f, (i, j) EDS results of the points B and C in Fig.4f
Fig.5  Polarization curves of Zn-0.6Cu-0.3Ti-Ce alloys
Fig.6  Fitting values of polarization curves of Zn-0.6Cu-0.3Ti-Ce alloys immersed for different time: (a) corrosion potential, (b) self-corrosion current
Fig.7  Polarization curves of Zn-0.6Cu-0.3Ti-Ce alloys after corrosion for 5 h (a), 15 h (b), 48 h (c), 120 h (d), 240 h (e) and 480 h (f)
Fig.8  EIS of Zn-0.6Cu-0.3Ti-Ce alloys after corrosion for 0 h (a), 120 h (b), 240 h (c) and 480 h (d)
Corrosion time / dSpecimenR1 / Ω·cm2CPE1×10-4R2 / Ω·cm2R3 / Ω·cm2L / Hn
0Zn-0.6Cu-0.3Ti-0.3Ce4.0520.260287.394.291.210.5391
Zn-0.6Cu-0.3Ti-0.45Ce3.7010.467379.841.893.610.5998
Zn-0.6Cu-0.3Ti-0.6Ce3.9290.275285.762.192.030.5615
5Zn-0.6Cu-0.3Ti-0.3Ce3.6450.3284267.63.366.510.4577
Zn-0.6Cu-0.3Ti-0.45Ce2.2230.5361131.91.964.560.7523
Zn-0.6Cu-0.3Ti-0.6Ce2.2930.4085181.42.257.170.6587
10Zn-0.6Cu-0.3Ti-0.3Ce3.8580.3675302.74.733.710.5287
Zn-0.6Cu-0.3Ti-0.45Ce2.6890.7536153.61.898.320.5546
Zn-0.6Cu-0.3Ti-0.6Ce3.0260.4664231.82.563.640.7973
20Zn-0.6Cu-0.3Ti-0.3Ce3.3210.4185429.44.204.320.5575
Zn-0.6Cu-0.3Ti-0.45Ce2.0631.5387.92.036.450.6747
Zn-0.6Cu-0.3Ti-0.6Ce2.1390.5789326.92.364.630.6628
Table 2  Fitting electrochemical parameters of EIS of Zn-0.6Cu-0.3Ti-Ce alloys immersed for different time
1 Wang Y H, Xiao L R, Zhao X J, et al. Corrosion behavior of Zn-Cu-Ti and Zn-Cu-Ti-Mg alloys in NaCl solution [J]. Mater. Corr.-Werkst. Und Korros, 2016, 67: 297
2 Ji S Y, Liang S H, Song K X, et al. Corrosion and electrochemical behavior of Zn-Cu-Ti alloy added with La in 3% NaOH solution [J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2016, 31: 408
3 Faur M, Ghiban B. Effects of hot and cold rolling on the microstructure of low alloy Zn-Cu and Zn-Cu-Ti zinc alloy with improved corrosion resistance [J]. Metal. Int., 2009, 14(3): 23
4 Wang X G, Gao K W, Yan L C, et al. Effect of Ce on corrosion resistance of films of ZnAlCe-layered double hydroxides on Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 335
王晓鸽, 高克玮, 颜鲁春 等. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究 [J]. 中国腐蚀与防护学报, 2021, 41: 335
doi: 10.11902/1005.4537.2020.068
5 Zhu M, Du C W, Li X G, et al. Corrosion behavior of pure copper and copper-clad steels in soil at Dagang district [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 496
朱 敏, 杜翠薇, 李晓刚 等. 纯Cu和铜包钢在大港土壤环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2013, 33: 496
6 Zhu Z X, Zhang J, Xu B S. Effect of RE on anti-corrosion mechanism of arc sprayed Zn-Al-Mg coatings [J]. Adv. Mater. Res., 2011, 282/283: 279
7 Shi X M. Experimental and modeling studies on installation of arc sprayed Zn anodes for protection of reinforced concrete structures [J]. Front. Struct. Civil Eng., 2016, 10: 1
doi: 10.1007/s11709-016-0312-7
8 Zhao J H, Zhang Y Q, He J S, et al. Interfacial microstructure in joining of arc sprayed Al-Zn coating to AZ91D by solid-liquid compound casting [J]. Surf. Coat. Technol., 2016, 307: 301
doi: 10.1016/j.surfcoat.2016.08.078
9 Zhao Z P, Tariq N U H, Tang J R, et al. Influence of annealing on the microstructure and mechanical properties of Ti/steel clad plates fabricated via cold spray additive manufacturing and hot-rolling [J]. Mater. Sci. Eng.: A, 2020, 775: 138968
doi: 10.1016/j.msea.2020.138968
10 Petrovskiy P, Travyanov A, Cheverikin V V, et al. Effect of encapsulated hot isostatic pressing on properties of Ti6Al4V deposits produced by cold spray [J]. Int. J. Adv. Manuf. Technol., 2020, 107: 437
doi: 10.1007/s00170-020-05080-9
11 Singh G, Kumar S, Kumar R. Comparative study of hot corrosion behavior of thermal sprayed alumina and titanium oxide reinforced alumina coatings on boiler steel (2020 Mater. Res. Express 7 026527) [J]. Mater. Res. Express, 2021, 8: 019701
12 Daroonparvar M, Yajid M A M, Yusof N M, et al. Microstructural characterization and corrosion resistance evaluation of nanostructured Al and Al/AlCr coated Mg-Zn-Ce-La alloy [J]. J. Alloy. Compd., 2014, 615: 657
doi: 10.1016/j.jallcom.2014.06.077
13 Da B, Yu H F, Ma H Y, et al. Equivalent electrical circuits fitting of electrochemical impedance spectroscopy for rebar steel corrosion of coral aggregate concrete [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 260
达 波, 余红发, 麻海燕 等. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究 [J]. 中国腐蚀与防护学报, 2019, 39: 260
14 Cao J Y, Fang Z G, Li L, et al. Corrosion behavior of domestic galvanized steel in different water environment: fresh water and salt water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 169
曹京宜, 方志刚, 李亮 等. 国产镀锌钢在不同水环境中的腐蚀行为: I淡水和盐水 [J]. 中国腐蚀与防护学报, 2021, 41: 169
doi: 10.11902/1005.4537.2021.003
15 Xiong J B, Li T M, Shen Y, et al. Obtainment of zinc-containing rare earth alloy coating of hot-galvanized steel tube [J]. Steel Pipe, 2013, 42(1): 25
熊俊波, 李同明, 沈 阳 等. 钢管热镀锌基稀土合金镀层的制备 [J]. 钢管, 2013, 42(1): 25
16 Amadeh A, Pahlevani B, Heshmati-Manesh S. Effects of rare earth metal addition on surface morphology and corrosion resistance of hot-dipped zinc coatings [J]. Corros. Sci., 2002, 44: 2321
doi: 10.1016/S0010-938X(02)00043-4
17 Ji S Y, Liang S H, Song K X, et al. Effect of La on microstructure and mechanical properties of Zn-Cu-Ti alloy [J]. Chin. J. Nonferrous Met., 2016, 26: 1649
冀盛亚, 梁淑华, 宋克兴 等. 稀土La对Zn-Cu-Ti合金显微组织和力学性能的影响 [J]. 中国有色金属学报, 2016, 26: 1649
18 Attar H, Prashanth K G, Zhang L C, et al. Effect of powder particle shape on the properties of In situ Ti-TiB composite materials produced by selective laser melting [J]. J. Mater. Sci. Technol., 2015, 31: 1001
doi: 10.1016/j.jmst.2015.08.007
19 Jiang B C, Cao J D, Cao X Y, et al. Hot corrosion behavior of Gd2(Zr1- x Ce x )2O7 thermal barrier coating ceramics exposed to artificial particulates of CMAS [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 263
姜伯晨, 曹将栋, 曹雪玉 等. Gd2(Zr1- x Ce x )2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 263
doi: 10.11902/1005.4537.2020.023
20 Winiarski J, Tylus W, Szczygiel B. EIS and XPS investigations on the corrosion mechanism of ternary Zn-Co-Mo alloy coatings in NaCl solution [J]. Appl. Surf. Sci., 2016, 364: 455
doi: 10.1016/j.apsusc.2015.12.183
21 Lou M, Lu Y F, Ma C L, et al. Study on Corrosion-resisting properties of high-speed Arc sprayed Zn-Al alloy coating in caverns [J]. Adv. Mater. Res., 2011, 399-401: 2072
22 Bobzin K, Öte M, Knoch M A, et al. Electrical resistivity of wire arc sprayed Zn and Cu coatings for in-mold-metal-spraying [A]. 20th Chemnitz Seminar on Materials Engineering [C]. Chemnitz: IOP, 2018: 012011
[1] DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun. Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[2] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[3] ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun. Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[4] XIAO Meng, WANG Qinying, ZHANG Xingshou, XI Yuchen, BAI Shulin, DONG Lijin, ZHANG Jin, YANG Junjie. Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[5] WU Duoli, WU Haotian, SUN Hui, SHI Jianjun, WEI Xinlong, ZHANG Chao. Research Status and Development of Laser Cladding High Temperature Protective Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
[6] WU Jiahao, WU Liang, YAO Wenhui, YUAN Yuan, XIE Zhihui, WANG Jingfeng, PAN Fusheng. Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[7] HU Qian, GAO Jiayi, GUO Ruisheng, SHI Junqin, WANG Xianzong. Long-term Corrosion of Lubricant Infused Surface with Micro-nano Structures on Anodized Aluminum Oxide[J]. 中国腐蚀与防护学报, 2023, 43(4): 773-780.
[8] HU Yunfei, CAO Xiangkang, MA Xiaoze, PAN Jinglong, CAI Guangyi, DONG Zehua. Fluorescent Nanofiller Modified Epoxy Coatings for Visualization of Coating Degradation[J]. 中国腐蚀与防护学报, 2023, 43(3): 460-470.
[9] WANG Hanmin, HUANG Feng, YUAN Wei, ZHANG Jiawei, WANG Xinyu, LIU Jing. Corrosion Behavior of a Novel Cu-Mo Weathering Steel in an Artificial Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
[10] MAO Xuncong, CHEN Leping, PENG Cong. Effect of Chemical Conversion Coatings Ca-P and Sr-P on Corrosion Resistance of Mg-Zn-Zr-Gd Alloy Cast After Solidifying by Pulsed Magnetic Field[J]. 中国腐蚀与防护学报, 2023, 43(3): 647-655.
[11] ZHANG Ergeng, YANG Lei, YANG Hu, LIANG Dandan, CHEN Qiang, ZHOU Qiong, HUANG Biao. Review on Research and Optimization of Corrosion Resistance of Thermal Sprayed Fe-based Amorphous Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 399-407.
[12] ZHANG Xiaoli, XUN Maonian, LIANG Xiaohong, ZHANG Caili, HAN Peide. Precipitation of Second Phase and Its Effect on Corrosion Resistance of Ce-containing S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.
[13] LIU Yun, REN Yanjie, CHEN Jian, ZHOU Libo, QIU Wei, HUANG Weiying, NIU Yan. Preparation and Corrosion Resistance of Ternary Layered Compound Cr2AlC Coating on 304 Stainless Steel for Bipolar Plates of PEMFC[J]. 中国腐蚀与防护学报, 2023, 43(1): 62-68.
[14] ZHANG Jiahuan, CUI Zhongyu, FAN Lin, SUN Mingxian. Effect of Heat Treatment Process on Corrosion Resistance of Ti6321 Alloy[J]. 中国腐蚀与防护学报, 2023, 43(1): 152-158.
[15] JIANG Jie, JIANG Jianjun, YANG Lijing, LEI Bufang, ZHAO Yu, LIN Jianqiang, SONG Zhenlun. Preparation and Corrosion Resistance of Zn-Al Coating on Sintered NdFeB Permanent Magnet[J]. 中国腐蚀与防护学报, 2023, 43(1): 104-110.
No Suggested Reading articles found!