Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (2): 289-300    DOI: 10.11902/1005.4537.2022.292
Current Issue | Archive | Adv Search |
Influence of Polyhydroxy Hyperdispersant on Anti-corrosion Property of Waterborne Epoxy Coatings
YUAN Shicheng1,2, WU Yanfeng3, XU Changhui2, WANG Xingqi2, LENG Zhe1(), YANG Yange2()
1.School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan 316022, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Equipment Project Management Center of Naval Equipment Department, Beijing 100071, China
Download:  HTML  PDF(14184KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of polyhydroxy hyperdispersants on the anti-corrosion property of waterborne epoxy varnishes were studied by means of open circuit potential, electrochemical impedance spectroscopy, polarization curves measurements and adhesion test. The results show that the addition of polyhydroxy dispersant into the epoxy varnish may accelerate the water absorption rate of the coating, while the increased water absorption can result in the preferential failure of the epoxy varnish. The corrosion failure process of epoxy varnish and epoxy varnish with 2% dispersant in 3.5%NaCl solution is the same, which can be divided into four stages: rapid water absorption of coating, the formation of corrosion products at the coating/metal interface, the accumulation of corrosion products and the diffusion of corrosion products.

Key words:  dispersant      waterborne epoxy      water absorption      corrosion      electrochemical impedance spectroscopy     
Received:  21 September 2022      32134.14.1005.4537.2022.292
ZTFLH:  TQ630.4+9  
Fund: Civil Aircraft Special Scientific Research Project(MJ-2017-J-99);Fundamental Research Funds for the Provincial Universities of Zhejiang(2021JZ006)
About author:  LENG Zhe, E-mail: lengzhe@zjou.edu.cn
YANG Yange, E-mail: ygyang@imr.ac.cn;

Cite this article: 

YUAN Shicheng, WU Yanfeng, XU Changhui, WANG Xingqi, LENG Zhe, YANG Yange. Influence of Polyhydroxy Hyperdispersant on Anti-corrosion Property of Waterborne Epoxy Coatings. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 289-300.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.292     OR     https://www.jcscp.org/EN/Y2023/V43/I2/289

CompositionFormulaEpoxy varnish
Component ACuring agent K-6216.6
Defoamer BW-2250.4
Flash rust inhibitors G-1201.4
Thickening agent BW-5091.0
Epoxy lotion80.6
Component BEpoxy emulsion K-02099.5
Leveling agent BW4040.5
Table 1  Fomula of the epoxy coatings (mass fraction / %)
Fig.1  OCP evolution of EV (a) and EVD (b) with immersion time
Fig.2  |Z|0.01vs immersion time for EV (a) and EVD (b)
Fig.3  Nyquist (a-d), modules (e-h) and phase angle (i-l) for the four stages of EV failure process: stage I (0-96h), stage II (96-2160 h), stage III (2160-4800 h), stage IV (4800-6720 h)
Fig.4  Nyquist (a-d), modules (e-h) and phase angle (i-l) for the four stages of EVD failure process: stage I (0-384 h), stage II (384-1440 h), stage III (1440-4560 h), stage IV (4560-6720 h)
Fig.5  Equivalent circuit for simulation of the EIS data for both EV and EVD
Fig.6  Variation of the electrochemical parameters: (a) Rc, (b) Qc, (c) Rct, (d) Qdl
Fig.7  Line fitting results for water diffusion in EV (a) and EVD (b) coating
CoatingPeriod / hAB / t·s-12RD / 10-10 cm2·s-1
EV0-96-9.49351.67×10-40.965041.06253
EVD0-48-9.66171.03×10-30.990091.34064
48-384-9.31631.81×10-40.983730.28778
Table 2  Linear fitting parameters and calculation results of diffusion coefficient
Fig.8  Potentiodynamic polarization curves for EV (a) and EVD (b) coated electrode immersed in 3.5%NaCl solution after different time
CoatingImmersion time / hEcorr / V vs. SCEIcorr / nA cm-2βa / V·dec-1βc / V·dec-1Rp / Ω·cm2
72-0.1770.70.1620.1805.29×107
EV384-0.2061.10.2580.2955.43×107
6720-0.2641.20.2100.1843.55×107
72-0.2271.10.1690.1573.21×107
EVD384-0.2471.40.2620.2133.64×107
6720-0.4001.80.1850.2142.39×107
Table 3  Electrochemical parameters of coatings immersed in 3.5%NaCl solution after different time
Fig.9  Variation of adhesion of two coatings with immersion time
Fig.10  Images of EV (a) and EVD (b) after adhesion test with 0 h (a1, b1), 6720 h (a2, b2) immersion time
Fig.11  Percentage of different fracture forms for two coatings
Fig.12  Microscopy morphologies of EV (a) and EVD (b) with 0 h (a1, b1), 4320 h (a2, b2), 6720 h (a3, b3) immersion time
Fig.13  Corrosion area percent of EV and EVD after different time immersion
Fig.14  Curing process of EVD: (a) initial state, (b) curing in progress, (c) final state
Fig.15  Failure process of EVD coating: (a) rapid water absorption, (b) corrosion product generation, (c) stable corrosion, (d) corrosion product diffusion
[1] Berce P, Skale S, Slemnik M. Electrochemical impedance spectroscopy study of waterborne coatings film formation [J]. Prog. Org. Coat., 2015, 82: 1
[2] Lendvay-Győrik G, Pajkossy T, Lengyel B. Corrosion-protection properties of water-borne paint coatings as studied by electrochemical impedance spectroscopy and gravimetry [J]. Prog. Org. Coat., 2006, 56: 304
doi: 10.1016/j.porgcoat.2006.05.012
[3] Löf D, Hamieau G, Zalich M, et al. Dispersion state of TiO2 pigment particles studied by ultra-small-angle X-ray scattering revealing dependence on dispersant but limited change during drying of paint coating [J]. Prog. Org. Coat., 2020, 142: 105590
[4] Song Z Y, Zhang C, Fu X Q, et al. Graphene nanosheet as a new particle dispersant for the jet-electrodeposition of high-performance Ni-P-WC composite coatings [J]. Surf. Coat. Technol., 2021, 425: 127740
doi: 10.1016/j.surfcoat.2021.127740
[5] Zeng T C. Preparation and performances of reactive branched polyurethane dispersants [D]. Wuxi: Jiangnan University, 2021
(曾腾超. 反应性支化聚氨酯高分子分散剂的制备及性能 [D]. 无锡: 江南大学, 2021)
[6] Silber S, Reuter E, Stüttgen A, et al. New concepts for the synthesis of wetting and dispersing additives for water-based systems [J]. Prog. Org. Coat., 2002, 45: 259
doi: 10.1016/S0300-9440(02)00064-4
[7] Saindane P, Jagtap R N. RAFT copolymerization of amphiphilic poly (ethyl acrylate-b-acrylic acid) as wetting and dispersing agents for water borne coating [J]. Prog. Org. Coat., 2015, 79: 106
[8] Lokhande G P, Jagtap R N. Design and synthesis of polymeric dispersant for water-borne paint by atom transfer radical polymerization [J]. Des. Monomers Polym., 2016, 19: 256
doi: 10.1080/15685551.2015.1136534
[9] Nie A Y, Huang B H, Wang P Z, et al. Application of polymer dispersant in waterborne coatings [J]. Mod. Paint. Finish., 2021, 24(2): 12
(聂爱杨, 黄炳华, 汪鹏主 等. 高分子分散剂在水性涂料中的应用 [J]. 现代涂料与涂装, 2021, 24(2): 12)
[10] Rezende T C, Silvestre J C M, Mendonça P V, et al. Efficient dispersion of TiO2 in water-based paint formulation using well-defined poly[oligo (ethylene oxide) methyl ether acrylate] synthesized by ICAR ATRP [J]. Prog. Org. Coat., 2022, 165: 106734
[11] Li C C, Xia Z B, Yan H, et al. Benzotriazole functionalized polydimethylsiloxane for reinforcement water-repellency and corrosion resistance of bio-based waterborne epoxy coatings in salt environment [J]. Corros. Sci., 2022, 199: 110150
doi: 10.1016/j.corsci.2022.110150
[12] Liu X W, Xiong J P, Lv Y W, et al. Study on corrosion electrochemical behavior of several different coating systems by EIS [J]. Prog. Org. Coat., 2009, 64: 497
doi: 10.1016/j.porgcoat.2008.08.012
[13] Dong Y H, Zhou Q. Relationship between ion transport and the failure behavior of epoxy resin coatings [J]. Corros. Sci., 2014, 78: 22
doi: 10.1016/j.corsci.2013.08.017
[14] Zhao X, Liu S, Wang X T, et al. Surface modification of ZrO2 nanoparticles with styrene coupling agent and its effect on the corrosion behaviour of epoxy coating [J]. Chin. J. Oceanol. Limnol., 2014, 32: 1163
doi: 10.1007/s00343-014-3327-8
[15] Liu B, Li Y, Lin H C, et al. Study on the diffusing behavior of water through epoxy coatings by EIS [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 172
(刘斌, 李瑛, 林海潮 等. 用EIS研究H2O在环氧涂层中的传输行为 [J]. 中国腐蚀与防护学报, 2002, 22: 172)
[16] Cao J Y, Wang Z Q, Li L, et al. Failure mechanism of organic coating with modified graphene under simulated deep-sea alternating hydrostatic pressure [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 139
(曹京宜, 王智峤, 李亮 等. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制 [J]. 中国腐蚀与防护学报, 2020, 40: 139)
[17] Sun W S, Yu S R, Gao S, et al. Molecular dynamics simulation of water molecule diffusion in graphene-reinforced epoxy resin anticorrosive coatings [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 411
(孙伟松, 于思荣, 高嵩 等. 水分子在石墨烯增强环氧树脂防腐涂层扩散的分子动力学模拟 [J]. 中国腐蚀与防护学报, 2021, 41: 411)
[18] Ai D, Mo R B, Wang H H, et al. Preparation of waterborne epoxy dispersion and its application in 2K waterborne epoxy coatings [J]. Prog. Org. Coat., 2019, 136: 105258
[19] Li P, Wang S, Zhou S X. Film formation behavior and mechanical properties of one-component waterborne crosslinkable polysiloxane/fumed silica nanocomposite coatings [J]. Prog. Org. Coat., 2020, 147: 105870
[20] Floyd F L, Avudaiappan S, Gibson J, et al. Using electrochemical impedance spectroscopy to predict the corrosion resistance of unexposed coated metal panels [J]. Prog. Org. Coat., 2009, 66: 8
doi: 10.1016/j.porgcoat.2009.04.009
[1] FAN Yufang, ZHANG Yafei, YIN Liusen, ZHAO Conghui, HE Yanbin, ZHANG Chuanxiang. Research Progress on Carbon Dots in Field of Metal Corrosion and Protection[J]. 中国腐蚀与防护学报, 2023, 43(6): 1237-1246.
[2] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[3] SHANG Ting, JIANG Guangrui, LIU Guanghui, QIN Hancheng. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of Zn-6%Al-3%Mg Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[4] LI Shuang, DONG Lijin, ZHENG Huaibei, WU Chengchuan, WANG Hongli, LING Dong, WANG Qinying. Research Progress of Stress Corrosion Cracking of Ultra-high Strength Steels for Aircraft Landing Gear[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[5] XING Shaohua, LIU Zhongye, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei. Galvanic Corrosion Behavior of ZCuSn5Pb5Zn5/B10 Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[6] WANG Hua, WANG Yingjie, LIU Enze. Hot Corrosion Behavior of New Type Co-Al-W Superalloys with Different Ni Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1419-1426.
[7] ZHANG Xinyi, LI Cong, WANG Yuxi, HUANG Mei, ZHU Huiping, LIU Fang, LIU Yang, NIU Fenglei. Research Progress on Liquid Metal Corrosion Behavior of Structural Steels for Lead Fast Reactor[J]. 中国腐蚀与防护学报, 2023, 43(6): 1216-1224.
[8] ZHU Yesen, CAI Kun, HU Baowen, XIA Yunqiu, HU Taoyong, HUANG Yi. Research Progress on Characteristics and Prediction Models of Carbon Dioxide Induced Corrosion for Submarine Pipelines[J]. 中国腐蚀与防护学报, 2023, 43(6): 1225-1236.
[9] QU Weiwei, CHEN Zehao, PEI Yanling, LI Shusuo, WANG Fuhui. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[10] ZHONG Jiaxin, GUAN Lei, LI Yu, HUANG Jiayong, SHI Lei. Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[11] HE Xun, WU Mengxue, YIN Li, ZHU Jin. Damage Evolution and Fatigue Life of Steel Wire with Double Corrosion Pits for Suspension Bridge under Wind- and Traffic-loads[J]. 中国腐蚀与防护学报, 2023, 43(6): 1358-1366.
[12] TIAN Guangyuan, YAN Chengming, YANG Zhihao, WANG Junsheng. Research Progress on Corrosion and Protection of Corrosion-resistant Mg-Li Alloys[J]. 中国腐蚀与防护学报, 2023, 43(6): 1255-1263.
[13] REN Wankai, LIAN Zhouyang, ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying. Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[14] ZHANG Kaili, DU Lili, TAN Jun, LIU Xiangzhou, MA Ji, QIU Ping. Preparation and Properties of Slippery Anti-corrosion Coating Based on SiO2 with Coral Cluster Morphology[J]. 中国腐蚀与防护学报, 2023, 43(6): 1319-1328.
[15] GUO Zhao, LI Han, CUI Zhongyu, WANG Xin, CUI Hongzhi. Comparative Study on Stress Corrosion Behavior of A100 Ultrahigh-strength Steel Beneath Dynamic Thin Electrolyte Layer and in Artificial Seawater Environments[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
No Suggested Reading articles found!