Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (6): 966-972    DOI: 10.11902/1005.4537.2021.339
Current Issue | Archive | Adv Search |
Preparation of Superamphiphobic Surface on Al-alloy and Its Corrosion Resistance
LI Yuqiao, SI Weiting, GAO Rongjie()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Cite this article: 

LI Yuqiao, SI Weiting, GAO Rongjie. Preparation of Superamphiphobic Surface on Al-alloy and Its Corrosion Resistance. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 966-972.

Download:  HTML  PDF(4082KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Superamphiphobic surface film was prepared on 5083 Al-alloy substrate by using chemical etching and then finishing in an ethanol solution of perfluorodecyl triethoxysilane. Its microscopic morphology, chemical composition, superamphiphobicity and corrosion resistance were characterized by means of field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), contact angle measurements and electrochemical tests. The results showed that the contact angles of water and ethylene glycol on the surface were 158° and 154.3°, respectively, exhibiting good superamphiphobicity. In comparison with the bare alloy, the free corrosion potential of the 5083 Al-alloy with superamphiphobic surface film exhibited significantly positive shift, while the corrosion current decreased from 4.016×10-6 A·cm-2 to 1.531×10-7 A·cm-2; after immersing in 3.5% (mass fraction) NaCl solution for 5 d, the charge transfer resistance of the alloy with superamphiphobic surface film was still significantly higher than that of the bare alloy, it follows that the superamphiphobic surface finishing can enhance the corrosion resistance of 5083 Al-alloy substrate.

Key words:  Al-alloy      chemical etching      superamphiphobic surface      anti-corrosion     
Received:  26 November 2021     
ZTFLH:  TG174.4  
Fund: National Natural Science Foundation of China-Shandong Province Joint Fund(U1706221)
About author:  GAO Rongjie, E-mail: dmh206@ouc.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.339     OR     https://www.jcscp.org/EN/Y2022/V42/I6/966

Fig.1  Process for the preparation of the superamphiphobic surface
Fig.2  SEM surfaces images of bare sample (a), etching and modifying sample (b), etching, athing and modifying sample (c, d)
Fig.3  Optical images of water droplets on the surface of different samples (a) and the optical images of ethylene glycol on the surface of different samples (b)
Fig.4  XRD pattern of the samples with different treatments
Fig.5  XPS spectra of the sample before fluorosilane modification (a) and peaks of O 1s (a) and Al 2p (b)
Fig.6  XPS spectra of the sample after fluorosilane modification (a) and peaks of C 1s (b), O 1s (c) and Si 2p (d)
Fig.7  Potential polarization curves of bare and superamphiphobic samples
SampleIcorrA·cm-2EcorrVβamV·dec-1βcmV·dec-1IE %
Bare4.016×10-6-0.8829227.17251.38---
Superamphiphobic1.531×10-7-0.4665144.82183.7996.29
Table 1  Fitting parameters of potential polarization curves
Fig.8  Nyquist plots of bare sample and the superamphiphobic sample with different immersing times
Fig.9  Equivalent circuit models of EIS of bare sample (a) and superamphiphobic sample (b)
SampleCPEfF·cm-2RfkΩ·cm2RctkΩ·cm2CdlF·cm-2RpkΩ·cm2
Bare1.96×10-50.01213.403.29×10-613.41
SA (0 d)9.18×10-725.95444.802.17×10-8470.75
SA (1 d)1.19×10-62.79199.702.49×10-8202.49
SA (2 d)8.90×10-69.8029.502.93×10-639.30
SA (3 d)1.39×10-54.5371.263.19×10-575.79
SA (4 d)1.90×10-50.2178.641.23×10-778.85
SA (5 d)1.06×10-513.9059.021.32×10-572.92
SA (6 d)3.57×10-56.154.014.57×10-410.16
Table 2  Electrochemical model parameters obtained by fitting Nyquist Plots of bare sample and superamphiphobic sample immersed for different times in Fig.8
[1] Liu H, Huang J Y, Li F Y, et al. Multifunctional superamphiphobic fabrics with asymmetric wettability for one-way fluid transport and templated patterning [J]. Cellulose, 2017, 24: 1129
doi: 10.1007/s10570-016-1177-6
[2] Xiang T F, Chen D P, Lv Z, et al. Robust superhydrophobic coating with superior corrosion resistance [J]. J. Alloy. Compd., 2019, 798: 320
doi: 10.1016/j.jallcom.2019.05.187
[3] Gandel D S, Easton M A, Gibson M A, et al. The influence of zirconium additions on the corrosion of magnesium [J]. Corros. Sci., 2014, 81: 27
doi: 10.1016/j.corsci.2013.11.051
[4] Zhang B B, Xu W C, Zhu Q J, et al. Mechanically robust superhydrophobic porous anodized AA5083 for marine corrosion protection [J]. Corros. Sci., 2019, 158: 108083
doi: 10.1016/j.corsci.2019.06.031
[5] George J E, Rodrigues V R M, Mathur D, et al. Self-cleaning superhydrophobic surfaces with underwater superaerophobicity [J]. Mater. Des., 2016, 100: 8
doi: 10.1016/j.matdes.2016.03.104
[6] Huang P, Gao R J, Liu W B, et al. Fabrication of superamphiphobic surface for nickel-plate on pipeline steel by salt solution etching and its anti-corrosion properties [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 96
(黄鹏, 高荣杰, 刘文斌 等. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2021, 41: 96)
[7] Guo C L, Ding H, Xie M X, et al. Multifunctional superamphiphobic fluorinated silica with a core-shell structure for anti-fouling and anti-corrosion applications [J]. Colloids Surf., 2021, 615A: 126155
[8] Wei J F, Li B C, Jing L Y, et al. Efficient protection of Mg alloy enabled by combination of a conventional anti-corrosion coating and a superamphiphobic coating [J]. Chem. Eng. J., 2020, 390: 124562
doi: 10.1016/j.cej.2020.124562
[9] Xu Z Y, Qi H B, Cheng Y Y, et al. Nanocoating: anti-icing superamphiphobic surface on 1060 aluminum alloy mesh [J]. Appl. Surf. Sci., 2019, 498: 143827
doi: 10.1016/j.apsusc.2019.143827
[10] Ghaffari S, Aliofkhazraei M, Barati Darband G, et al. Review of superoleophobic surfaces: evaluation, fabrication methods, and industrial applications [J]. Surf. Interfaces, 2019, 17: 100340
[11] Teisala H, Butt H J. Hierarchical structures for superhydrophobic and superoleophobic surfaces [J]. Langmuir, 2019, 35: 10689
doi: 10.1021/acs.langmuir.8b03088 pmid: 30463408
[12] Lian Z X, Xu J K, Yu P, et al. Oil-repellent and corrosion resistance properties of superhydrophobic and superoleophobic aluminum alloy surfaces based on nanosecond laser-textured treatment [J]. Met. Mater. Int., 2020, 26: 1603
doi: 10.1007/s12540-019-00382-4
[13] Zhang D J, Wu G Q, Li H, et al. Superamphiphobic surfaces with robust self-cleaning, abrasion resistance and anti-corrosion [J]. Chem. Eng. J., 2021, 406: 126753
doi: 10.1016/j.cej.2020.126753
[14] Chao J Q, Feng J K, Chen F Z, et al. Fabrication of superamphiphobic surfaces with controllable oil adhesion in air [J]. Colloids Surf., 2021, 610A: 125708
[15] Zhang B B, Zeng Y X, Wang J, et al. Superamphiphobic aluminum alloy with low sliding angles and acid-alkali liquids repellency [J]. Mater. Des., 2020, 188: 108479
doi: 10.1016/j.matdes.2020.108479
[16] Lv Z X, Yu S R, Song K X, et al. A two-step method fabricating a hierarchical leaf-like superamphiphobic PTFE/CuO coating on 6061Al [J]. Prog. Org. Coat., 2020, 147: 105723
[17] Zhong Y X, Hu J, Zhang Y F, et al. The one-step electroposition of superhydrophobic surface on AZ31 magnesium alloy and its time-dependence corrosion resistance in NaCl solution [J]. Appl. Surf. Sci., 2018, 427: 1193
doi: 10.1016/j.apsusc.2017.08.103
[18] Tuo Y J, Zhang H F, Chen L, et al. Fabrication of superamphiphobic surface with hierarchical structures on metal substrate [J]. Colloids Surf., 2021, 612A: 125983
[19] Zhang B B, Zhao X, Li Y T, et al. Fabrication of durable anticorrosion superhydrophobic surfaces on aluminum substrates via a facile one-step electrodeposition approach [J]. RSC Adv., 2016, 6: 35455
doi: 10.1039/C6RA05484F
[20] Song J L, Huang S, Hu K, et al. Fabrication of superoleophobic surfaces on Al substrates [J]. J. Mater. Chem., 2013, 1A: 14783
[21] Geiculescu A C, Strange T F. A microstructural investigation of low-temperature crystalline alumina films grown on aluminum [J]. Thin Solid Films, 2003, 426: 160
doi: 10.1016/S0040-6090(02)01293-2
[22] Kloprogge J T, Duong L V, Wood B J, et al. XPS study of the major minerals in bauxite: gibbsite, bayerite and (pseudo-) boehmite [J]. J. Colloid Interface Sci., 2006, 296: 572
doi: 10.1016/j.jcis.2005.09.054
[23] Saleema N, Farzaneh M, Paynter R W, et al. Prevention of ice accretion on aluminum surfaces by enhancing their hydrophobic properties [J]. J. Adhes. Sci. Technol., 2011, 25: 27
doi: 10.1163/016942410X508064
[24] Deng R, Hu Y M, Wang L, et al. An easy and environmentally-friendly approach to superamphiphobicity of aluminum surfaces [J]. Appl. Surf. Sci., 2017, 402: 301
doi: 10.1016/j.apsusc.2017.01.091
[25] Laoharojanaphand P, Lin T J, Stoffer J O. Glow discharge polymerization of reactive functional silanes on poly (methyl methacrylate) [J]. J. Appl. Polym. Sci., 1990, 40: 369
doi: 10.1002/app.1990.070400306
[26] Hu J M, Liu L, Zhang J Q, et al. Electrodeposition of silane films on aluminum alloys for corrosion protection [J]. Prog. Org. Coat., 2007, 58: 265
doi: 10.1016/j.porgcoat.2006.11.008
[27] Li X W, Zhang Q X, Guo Z, et al. Low-cost and large-scale fabrication of a superhydrophobic 5052 aluminum alloy surface with enhanced corrosion resistance [J]. RSC Adv., 2015, 5: 29639
doi: 10.1039/C5RA00324E
[28] Ren J D, Gao R J, Zhang Y, et al. Fabrication of amphiphobic surface of pipeline steel by acid etching and its anti-corrosion properties [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 233
(任继栋, 高荣杰, 张宇 等. 混酸刻蚀-氟化处理制备X80管线钢双疏表面及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2017, 37: 233)
[1] XIONG Yiming, MEI Wan, WANG Zehua, YU Rui, XU Shiyao, WU Lei, ZHANG Xin. Corrosion Behavior of 5083 Al-alloy under Magnetic Field[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[2] LI Danhong, YANG Tengxun, SUN Tianxiang, LI Xinglinmao, MA Chengcheng, ZHANG Yue, CHEN Shougang. Preparation and Anti-corrosion Properties of Silica Aerogel-modified Polyurethane Composite Coatings[J]. 中国腐蚀与防护学报, 2024, 44(1): 167-174.
[3] LIU Hao, GUO Xiaokai, WANG Wei, WU Liankui, CAO Fahe, SUN Qingqing. Effect of Ultrasonic Shot Peening on Microstructure and Properties of a 7075 Al-alloy Rod[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[4] LYU Zhengping, LI Yuan, LIU Xiaohang, CUI Zhongyu, CUI Hongzhi, WANG Xin, PANG Kun, LI Yizhou. Synergistic Inhibition Effect of Thiourea and Sodium Nitrate on Crevice Corrosion of 7075 Al-alloy in Acidic Sodium Chloride Solution[J]. 中国腐蚀与防护学报, 2023, 43(6): 1367-1374.
[5] LI Chunlin, SHI Hongwei, LIANG Guoping, LI Li, WANG Hao, WANG Wei, LIU Fuchun, HAN En-Hou. Corrosion Resistance and Aging Mechanism of Polyurethane Topcoat for High-speed Train[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[6] ZHONG Jiaxin, GUAN Lei, LI Yu, HUANG Jiayong, SHI Lei. Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[7] ZHANG Kaili, DU Lili, TAN Jun, LIU Xiangzhou, MA Ji, QIU Ping. Preparation and Properties of Slippery Anti-corrosion Coating Based on SiO2 with Coral Cluster Morphology[J]. 中国腐蚀与防护学报, 2023, 43(6): 1319-1328.
[8] XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[9] MENG Fandi, GAO Haodong, LIU Li, CUI Yu, LIU Rui, WANG Fuhui. Preparation and Anticorrosive Performance of a Basalt Organic Coating for Deep Sea Coupled Pressure-fluid Environment[J]. 中国腐蚀与防护学报, 2023, 43(4): 704-712.
[10] PENG Wenshan, DUAN Tigang, MA Li, XIN Yonglei, CHENG Wenhua, LIU Shaotong. Corrosion Behavior of ZAlSi7Mg Al-alloy in Deep-sea Environments in Western Pacific Ocean and South China Sea[J]. 中国腐蚀与防护学报, 2023, 43(3): 516-524.
[11] DUAN Tigang, LI Zhen, PENG Wenshan, ZHANG Penghui, DING Kangkang, GUO Weimin, HOU Jian, MA Li, XU Likun. Corrosion Characteristics of 5A06 Al-alloy Exposed in Natural Deep-sea Environment[J]. 中国腐蚀与防护学报, 2023, 43(2): 352-358.
[12] YU Fang, WANG Xiang, ZHANG Zhao. Research Progress of Nanofillers for Epoxy Anti-corrosion Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 220-230.
[13] MAO Yingchang, ZHU Yu, SUN Shengkai, QIN Zhenbo, XIA Da-Hai, HU Wenbin. Localized Corrosion of 5083 Al-alloy in Simulated Marine Splash Zone[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[14] LIU Zeqi, HE Xiaoxiao, QI Kang, HUANG Hualiang. Galvanic Corrosion Behavior for Galvanic Couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(6): 1016-1026.
[15] XIA Xiaojian, WAN Xinyuan, GAO Yan, WANG Qiwei, YAN Kanghua, CHEN Yunxiang, HONG Yicheng, ZHANG Junxi. Corrosion Characteristics of Atmospheric Corrosion of 1050 Al-alloy under Power-on Condition[J]. 中国腐蚀与防护学报, 2022, 42(6): 1065-1069.
No Suggested Reading articles found!