Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (6): 959-965    DOI: 10.11902/1005.4537.2021.336
Current Issue | Archive | Adv Search |
Corrosion Fatigue Crack Propagation Performance of DH36 Steel in Simulated Service Conditions for Offshore Engineering Structures
LIU Dong1,2, LIU Jing1(), HUANG Feng1, DU Liying2
1. State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2. R&D Center of Wuhan Iron & Steel Co. Ltd., Baosteel Central Research Institute, Wuhan 430080, China
Cite this article: 

LIU Dong, LIU Jing, HUANG Feng, DU Liying. Corrosion Fatigue Crack Propagation Performance of DH36 Steel in Simulated Service Conditions for Offshore Engineering Structures. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 959-965.

Download:  HTML  PDF(3665KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion fatigue crack growth (CFCG) of DH36 steel in artificial seawater was studied via a home-made test set, which can accurately control the load, stress ratio, frequency, temperature, flow rate, pH value, ion concentration, and other factors of the artificial seawater, meanwhile, electrochemical monitoring of the whole process could be applied. The results show that the higher the stress ratio R, the faster the CFCG rate. The average acceleration ratio of CFCG rate by R=0.3 and R=0.5 is 115% and 217% of that by R=0.1 respectively. On the other hand, the CFCG rate becomes faster with the increase of temperature. The average acceleration ratio at 30 ℃ is only 20% of that at 5 ℃. The CFCG rate turns to be faster with the increase of seawater flow rate. The average acceleration ratio by flow rate of 0.3, 1 and 3 L/min, is 19%, 34% and 50% of that in static seawater, respectively. There is no difference in the fatigue crack growth (FCG) rate in air by changing test frequencies, but there is a great difference in the CFCG rate in seawater, namely the lower the frequency, the faster the CFCG rate. By comparing the CFCG rate with the FCG rate by different frequencies, it shows that seawater corrosion can inhibit the crack growth to certain extent at 10 Hz, but accelerates the crack growth at 1 and 0.1 Hz with an average acceleration ratio of 47.8% and 261.8%. The acceleration effect of corrosion on fatigue crack growth can be quantified by in-situ monitoring the electrochemical corrosion behavior at the crack tip during CFCG.

Key words:  corrosion fatigue crack growth rate      stress ratio      frequency      temperature      flow rate     
Received:  25 November 2021     
ZTFLH:  TG172.5  
Fund: National Natural Science Foundation of China(51871172);Central Government Directs Special Projects for the Development of Local Science and Technology(ZYDD2018026)
About author:  LIU Jing, E-mail: liujing@wust.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.336     OR     https://www.jcscp.org/EN/Y2022/V42/I6/959

Fig.1  Schematic diagram of seawater corrosion fatigue crack growth rate test equipment
Fig.2  da/dNK curve of DH36 steel under different stress ratios
EnvironmentRf / HzT / ℃V / L·min-1CnΔKth / MPa·m0.5
Seawater0.152304.712×10-103.7339.15
Seawater0.352302.631×10-104.2487.79
Seawater0.552301.690×10-104.5386.07
Seawater0.55502.089×10-93.286---
Seawater0.551001.618×10-93.405---
Seawater0.552001.564×10-93.431---
Seawater0.553002.877×10-93.247---
Seawater0.552005.926×10-103.628---
Seawater0.55200.32.111×10-93.288---
Seawater0.552018.781×10-92.808---
Seawater0.552036.722×10-92.949---
Seawater0.50.12001.941×10-83.006---
Seawater0.512001.573×10-82.839---
Seawater0.5102002.208×10-93.271---
Air0.50.12004.629×10-93.000---
Air0.512002.560×10-93.263---
Air0.5102004.945×10-93.068---
Table 1  Paris formula and threshold value ΔKth of corrosion fatigue crack growth rate under different test conditions
Fig.3  da/dNK curves of DH36 steel at different temper-atures
Fig.4  da/dNK curves of DH36 steel at different flow rates
Fig.5  da/dNK curves of DH36 steel under different fre-quencies in air and seawater
f / HzFCG rate / 10-6 mm·cycle-1CFCG rate / 10-6 mm·cycle-1Relative acceleration ratio η / %
101520251015202510152025
105.7820.0648.5096.174.1215.5239.7882.54-28.74-22.63-17.98-14.17
14.6917.6145.0393.267.6626.4963.87126.3963.3050.4041.8435.52
0.14.6017.9246.9899.2419.6866.58158.10309.20327.41271.62236.51211.57
Table 2  Relative acceleration ratio of DH36 steel of FCG rate and CFCG rate under different frequencies and ΔR=10, 15, 20, 25 MPa·m0.5
Fig.6  Variation of corrosion potential and crack length with corrosion time at different frequencies (a); partial enlarged view of rectangular area in Fig.6a (b)
Fig.7  Morphology of corrosion products in initial stage (a), middle stage (b) and later stage (c) of crack propagation length ranges
[1] Liu W, Wang J. Environmental impact of material corrosion research progress in marine splash zone [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 504
(刘薇, 王佳. 海洋浪溅区环境对材料腐蚀行为影响的研究进展 [J]. 中国腐蚀与防护学报, 2010, 30: 504)
[2] Zhou Y, Zhang H B, Du M, et al. Effect of cathodic potentials on hydrogen embrittlement of 1000 MPa grade high strength steel in simulated deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 409
(周宇, 张海兵, 杜敏 等. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 409)
[3] Li Z Y, Wang G, Luo S W, et al. Early corrosion behavior of EH36 ship plate steel in tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 463
(李子运, 王贵, 罗思维 等. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 463)
[4] Ouyang H, Liu J Z, Su X Y, et al. The effect of stress ratio on fatigue crack growth rates [J]. Chin. J. Solid Mech., 1984, (4): 577
(欧阳辉, 刘俊洲, 苏小燕 等. 应力比R对疲劳裂纹扩展速率的影响 [J]. 固体力学学报, 1984, (4): 577)
[5] Matlock D K, Edwards G R, Olson D L, et al. Effect of sea water on the fatigue crack propagation characteristics of welds for offshore structures [J]. J. Mater. Eng., 1987, 9: 25
doi: 10.1007/BF02833784
[6] Meng X Q, Lin Z Y, Wang F F. Investigation on corrosion fatigue crack growth rate in 7075 aluminum alloy [J]. Mater. Des., 2013, 51: 683
doi: 10.1016/j.matdes.2013.04.097
[7] Wu S C, Li C H, Zhang W, et al. Recent research progress on mechanisms and models of fatigue crack growth for metallic materials [J]. Chin. J. Solid Mech., 2019, 40: 489
(吴圣川, 李存海, 张文 等. 金属材料疲劳裂纹扩展机制及模型的研究进展 [J]. 固体力学学报, 2019, 40: 489)
[8] Igwemezie V, Mehmanparast A. Waveform and frequency effects on corrosion-fatigue crack growth behaviour in modern marine steels [J]. Int. J. Fatigue, 2020, 134: 105484
doi: 10.1016/j.ijfatigue.2020.105484
[9] Wang R. A fracture model of corrosion fatigue crack propagation of aluminum alloys based on the material elements fracture ahead of a crack tip [J]. Int. J. Fatigue, 2008, 30: 1376
doi: 10.1016/j.ijfatigue.2007.10.007
[10] Kang D H, Lee J K, Kim T W. Corrosion fatigue crack propagation in a heat affected zone of high-performance steel in an underwater sea environment [J]. Eng. Failure Anal., 2011, 18: 557
doi: 10.1016/j.engfailanal.2010.08.019
[11] Chemin A, Spinelli D, Filho W B, et al. Corrosion fatigue crack growth of 7475 T7351 aluminum alloy under flight simulation loading [J]. Procedia Eng., 2015, 101: 85
doi: 10.1016/j.proeng.2015.02.012
[12] Jeong D, Lee S, Seo I, et al. Effect of applied potential on fatigue crack propagation behavior of Fe24Mn steel in seawater [J]. Met. Mater. Int., 2015, 21: 14
doi: 10.1007/s12540-015-1003-y
[13] Liao X X, Huang Y M, Qiang B, et al. Corrosion fatigue tests in synthetic seawater with constant temperature liquid circulating system [J]. Int. J. Fatigue, 2020, 135: 105542
doi: 10.1016/j.ijfatigue.2020.105542
[14] Kang D H, Lee J K, Kim T W. Corrosion fatigue crack propagation of high-strength steel HSB800 in a seawater environment [J]. Procedia Eng., 2011, 10: 1170
doi: 10.1016/j.proeng.2011.04.195
[15] Elbert W. The significance of fatigue crack closure [A]. Damage Tolerance in Aircraft Structures: A Symposium Presented at the Seventy-third Annual Meeting America Society for Testing and Materials, Toronto, Ontario, Canada, 21-26 June 1970 [C]. Toronto, 1971: 230
[16] Stock S R, Langøy M A. Fatigue-crack growth in Ti-6Al-4V-0.1Ru in air and seawater: part I. Design of experiments, assessment, and crack growth-rate curves [J]. Metall. Mater. Trans., 2001;32A: 2297
[17] Menan F, Henaff G. Influence of frequency and waveform on corrosion fatigue crack propagation in the 2024-T351 aluminium alloy in the S-L orientation [J]. Mater. Sci. Eng., 2009, 519A: 70.
[18] Wang P Q, Cui G C. A study on effect of carrier frequency on corrosion fatigue crack growth rate [J]. J. Mech. Strength, 1992, 11(1): 74
(王蒲全, 崔广椿. 加载频率对腐蚀疲劳裂纹扩展速率影响的研究 [J]. 机械强度, 1992, 11(1): 74)
[19] Menan F, Henaff G. Influence of frequency and exposure to a saline solution on the corrosion fatigue crack growth behavior of the aluminum alloy 2024 [J]. Int. J. Fatigue, 2009, 31: 1684
doi: 10.1016/j.ijfatigue.2009.02.033
[1] ZHAO Guoxian, LIU Ranran, DING Langyong, ZHANG Siqi, GUO Menglong, WANG Yingchao. Effect of Temperature on CO2-inducedCorrosion Behavior of 5Cr Steel in a Simulated Oilfield Produced High-temperature and High-pressured Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[2] LI Jiancheng, ZHAO Jing, XIE Xin, WANG Jinlong, CHEN Minghui, WANG Fuhui. Preparation of Phosphate Coatings on Ti-alloy and Their Corrosion Behavior Beneath Salt-mixture in Water Vapor Flow at 650oC[J]. 中国腐蚀与防护学报, 2024, 44(1): 159-166.
[3] WANG Shuang, WANG Zixing, CHENG Xiaonong, LUO Rui. Effect of Rare Earth La on High Temperature Oxidation of Cobalt-based Superalloy GH5188 at 1100oC[J]. 中国腐蚀与防护学报, 2024, 44(1): 221-228.
[4] FENG Kangkang, REN Yanjie, LV Yunlei, ZHOU Mengni, CHEN Jian, NIU Yan. Effect of Si Content on Oxidation Behavior of Quaternary Fe-20Ni-20Cr- ySi Alloys in Oxygen at 900oC[J]. 中国腐蚀与防护学报, 2024, 44(1): 100-106.
[5] WANG Xiao, LI Ming, LIU Feng, WANG Zhongping, LI Xiangbo, LI Ningwang. Effect of Temperature on Erosion-corrosion Behavior of B10 Cu-Ni Alloy Pipe[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[6] REN Yan, ZHANG Xintao, GAI Xin, XU Jingjun, ZHANG Wei, CHEN Yong, LI Meishuan. High Temperature Oxidation Behavior of Quaternary (Cr2/3Ti1/3)3AlC2 MAX Ceramic in Air and Steam[J]. 中国腐蚀与防护学报, 2023, 43(6): 1284-1292.
[7] YU Chenjun, ZHANG Tianyi, ZHANG Naiqiang, ZHU Zhongliang. Influence of Thermal Aging on Corrosion Behavior of Ferritic-martensitic Steel P92 in Supercritical Water[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[8] CHEN Zhenyu, ZHU Zhongliang, MA Chenhao, ZHANG Naiqiang, LIU Yutong. Effect of Different Loading Conditions on Corrosion Fatigue Crack Growth Rate of Nickel Base Alloy 617 in Supercritical Water[J]. 中国腐蚀与防护学报, 2023, 43(5): 1057-1063.
[9] GUO Tao, HUANG Feng, HU Qian, LIU Jing. Oxidation Kinetics of 9Ni Steel Billet at High Temperature[J]. 中国腐蚀与防护学报, 2023, 43(4): 882-889.
[10] WU Duoli, WU Haotian, SUN Hui, SHI Jianjun, WEI Xinlong, ZHANG Chao. Research Status and Development of Laser Cladding High Temperature Protective Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
[11] ZHOU Zhiping, WU Dakang, ZHANG Hongfu, ZHANG Lei, LI Mingxing, ZHANG Zhixin, ZHONG Xiankang. Tensile Property of L80 Steel in Air at 25-350 ℃ and Its Corrosion Behavior in Simulated Casing Service Conditions at 150-350 ℃[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[12] LIU Shuyu, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, DUAN Haitao, XIA Siyao, XIA Chunhuai. High Temperature Oxidation and Solid Na2SO4 Induced Corrosion of CVD Aluminide Coating on K444 Alloy in Air[J]. 中国腐蚀与防护学报, 2023, 43(3): 553-560.
[13] LIU Zhihao, LIU Guangming, HE Sifan, DONG Meng, LI Yu, LI Futian, ZHU Ting. High Temperature Corrosion Behavior of F22 Base Metal and Weld in Simulated Coastal Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(3): 594-600.
[14] CHEN Qingguo, TANG Quanhong, QIN Zhenjie, LI Yifan, LI Lei, LI Xuanpeng, YUAN Juntao, SU Hang, FU Anqing. Corrosion Behavior of Hot-dip Aluminum Coating in “High Temperature-salt Deposited-CO2/O2” Multi-degree Coupling Environment[J]. 中国腐蚀与防护学报, 2023, 43(3): 569-577.
[15] CHEN Hanlin, MA Li, HUANG Guosheng, DU Min. Effects of pH Value, Temperature and Salinity on Film Formation of B30 Cu-Ni Alloy in Seawater[J]. 中国腐蚀与防护学报, 2023, 43(3): 481-493.
No Suggested Reading articles found!