Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (1): 167-174    DOI: 10.11902/1005.4537.2023.044
Current Issue | Archive | Adv Search |
Preparation and Anti-corrosion Properties of Silica Aerogel-modified Polyurethane Composite Coatings
LI Danhong, YANG Tengxun, SUN Tianxiang, LI Xinglinmao, MA Chengcheng, ZHANG Yue, CHEN Shougang()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Cite this article: 

LI Danhong, YANG Tengxun, SUN Tianxiang, LI Xinglinmao, MA Chengcheng, ZHANG Yue, CHEN Shougang. Preparation and Anti-corrosion Properties of Silica Aerogel-modified Polyurethane Composite Coatings. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 167-174.

Download:  HTML  PDF(7550KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Waterborne polyurethane (WPU) coating, a new kind of green material due to its excellent wear resistance, flexibility, low-temperature resistance and chemical medium resistance, has been widely attached attention to the field of marine corrosion protection. In this paper, hydrophilic modification of the hydrophobic silica (SiO2) aerogel was carried out by urea aldehyde modification. Then, the unmodified- and modified-SiO2 aerogels as filler were added into the WPU coatings with doses 0.5%, 1% and 2%, respectively, aiming to improve the anti-corrosion properties of WPU coatings. The functional groups and microstructure of SiO2 aerogel were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). These results proved that SiO2 aerogel was successfully modified by urea-formaldehyde. The anti-corrosion properties of coatings with different fillers were studied by contact angle test, electrochemical impedance spectroscopy (EIS), adhesion test and salt spray test. The results showed that the adhesion of the coating was significantly improved after adding hydrophilic-modified SiO2 aerogel. When 1% hydrophilic modified SiO2 aerogel was added, the adhesion of the composite coating was improved by 36% correspondingly, the low-frequency impedance modulus of the composite coating increased above 6 × 107 Ω·cm2 after immersion in 3.5% NaCl solution for 70 d. There was no obvious bubbling phenomenon on the surface of the composite coating with 1% hydrophilic modified SiO2 aerogel after the 480 h salt spray testing, which showed its best anti-corrosion performance. Thus, it is concluded that the hydrophilic modification of the hydrophobic SiO2 aerogel by the urea aldehyde modification can improve the dispersibility of the hydrophobic SiO2 aerogel in the WPU coating, the interface compatibility with the coating and the barrier and shielding effect of the SiO2 aerogel on corrosive ions. Furthermore, the corrosion resistance of the WPU coating is improved.

Key words:  silicon dioxide aerogel      waterborne polyurethane      hydrophilic modification      anti-corrosion property      long-term anticorrosion     
Received:  22 February 2023      32134.14.1005.4537.2023.044
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52371081)
Corresponding Authors:  CHEN Shougang, E-mail: sgchen@ouc.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.044     OR     https://www.jcscp.org/EN/Y2024/V44/I1/167

Fig.1  FTIR spectra of silica aerogel before and after modification
Fig.2  SEM image of SiO2 aerogel, elemental map scannings of C, Si and O, and EDS spectrum
Fig.3  Contact angles of polyurethane composite coatings containing unmodified and modified SiO2 aerogels
Fig.4  Comparison of adhesions of polyurethane composite coatings containing unmodified and modified SiO2 aerogels
Fig.5  Nyquist (a), impedance module (b) and phase angle (c) plots of EIS curves of blank polyurethane coating
Fig.6  Nyquist (a), impedance module (b) and phase angle (c) plots of EIS curves of polyurethane composite coatings containing different mass ratios of unmodified SiO2 aerogel (1, 2 and 3 represent the coatings containing 0.5%, 1% and 2% unmodified SiO2 aerogel, respectively)
Fig.7  Nyquist (a), module (b) and phase (c) plots of EIS curves of polyurethane composite coatings containing different mass ratios of modified SiO2 aerogel (1, 2 and 3 represent the coatings containing 0.5%, 1% and 2% modified SiO2 aerogel, respectively)
Fig.8  Equivalent circuit for fitting EIS of various coatings
Sample

Rc

Ω·cm2

CPE c

Cc

F·cm-2

Rct

Ω·cm2

CPEdl

Cdl

F·cm-2

Yc / F·cm-2·S n-1ncYdl / F·cm-2·S n-1ndl
01.19 × 1032.82 × 10-70.753.09 × 10-88.89 × 1037.50 × 10-240.021.29 × 10-27
1% SiO28.16 × 1048.84 × 10-90.957.35 × 10-92.06 × 1066.87 × 10-80.522.1 × 10-8
1% SiO2 M1.63 × 1071.05 × 10-90.991.05 × 10-94.29 × 1075.95 × 10-90.655.11 × 10-9
Table 1  Fitting parameters of EIS curves of various coatings after immersion for 70 d
Fig.9  Macro-morphologies of various as-prepared polyurethane composite coatings after salt spray test for 0-20 d
1 Yu F, Wang X, Zhang Z. Research progress of nanofillers for epoxy anti-corrosion coatings [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 220
于 芳, 王 翔, 张 昭. 纳米填料在环氧防腐涂层中的应用研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 220
2 Yang K, Duan Y X, Liu G C, et al. Smart ZnS@C filler for super-anticorrosive self-healing zinc-rich epoxy coating [J]. Nano Res., 2022, 15: 4756
doi: 10.1007/s12274-022-4161-5
3 Fu Y Q, Wang Z F, Chen S L, et al. Protective effect of impressed current method on Q235A steel in simulated splash zone [J]. Corros. Prot., 2016, 37: 811
符耀庆, 王在峰, 陈胜利 等. 外加电流法对Q235A钢在模拟浪花飞溅区的保护效果 [J]. 腐蚀与防护, 2016, 37: 811
4 Guo W Y, Li X Y, Chen M X, et al. Electrochemical cathodic protection powered by triboelectric nanogenerator [J]. Adv. Funct. Mater., 2014, 24: 6691
doi: 10.1002/adfm.v24.42
5 Guo C B, Cao J J, Chen Z Y. Core-shell mesoporous silica-metal-phenolic network microcapsule for the controlled release of corrosion inhibitor [J]. Appl. Surf. Sci., 2022, 605: 154747
doi: 10.1016/j.apsusc.2022.154747
6 Kobzar Y L, Fatyeyeva K. Ionic liquids as green and sustainable steel corrosion inhibitors: recent developments [J]. Chem. Eng. J., 2021, 425: 131480
7 Wang D, Zhao G H, Yang W H, et al. Comparative analysis of corrosion resistance in molten aluminum of H13 Steel with different surface treatments [J]. Heat Treat. Met., 2022, 47(2): 219
doi: 10.13251/j.issn.0254-6051.2022.02.039
王 铎, 赵国华, 杨文灏 等. 不同表面处理的H13钢耐铝液腐蚀的对比分析 [J]. 金属热处理, 2022, 47(2): 219
8 Bounab N, Duclaux L, Reinert L, et al. Improvement of zero valent iron nanoparticles by ultrasound-assisted synthesis, study of Cr(VI) removal and application for the treatment of metal surface processing wastewater [J]. J. Environ. Chem. Eng., 2021, 9: 104773
doi: 10.1016/j.jece.2020.104773
9 George J S, Vijayan P P, Hoang A T, et al. Recent advances in bio-inspired multifunctional coatings for corrosion protection [J]. Prog. Org. Coat., 2022, 168: 106858
10 Wang H, Xu J H, Du X S, et al. A self-healing polyurethane-based composite coating with high strength and anti-corrosion properties for metal protection [J]. Composites, 2021, 225B: 109273
11 Liu T, Zhang D W, Ma L W, et al. Smart protective coatings with self-sensing and active corrosion protection dual functionality from pH-sensitive calcium carbonate microcontainers [J]. Corros. Sci., 2022, 200: 110254
12 Yuan S C, Wu Y F, Xu C H, et al. Influence of polyhydroxy hyperdispersant on anti-corrosion property of waterborne epoxy coatings [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 289
袁世成, 吴艳峰, 徐长慧 等. 多羟基超分散剂对水性环氧涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 289
doi: 10.11902/1005.4537.2022.292
13 Shi Y J, Chen Z H, Yu F. Preparation and performance study of waterborne epoxy anticorrosive coating material [J]. Electroplat. Finish., 2009, 28(4): 45
石亚军, 陈中华, 余 飞. 水性环氧防腐涂料的制备与性能研究 [J]. 电镀与涂饰, 2009, 28(4): 45
14 Zeng X G, Gong M, Liu C H, et al. Current status of research on waterborne polyurethane coatings [J]. Electroplat. Finish., 2018, 37: 1060
曾宪光, 龚 敏, 刘朝辉 等. 水性聚氨酯涂料的研究现状 [J]. 电镀与涂饰, 2018, 37: 1060
15 Špírková M, Pavličević J, Aguilar Costumbre Y, et al. Novel waterborne poly(urethane-urea)/silica nanocomposites [J]. Polym. Compos., 2020, 41: 4031
doi: 10.1002/pc.v41.10
16 Mariappan T, Kamble A, Naik S M. An investigation of primer adhesion and topcoat compatibility on the waterborne intumescent coating to structural steel [J]. Prog. Org. Coat., 2019, 131: 371
doi: 10.1016/j.porgcoat.2019.03.003
17 Mohammadi A, Doctorsafaei A H, Burujeny S B, et al. Silver(I) complex with a Schiff base ligand extended waterborne polyurethane: a developed strategy to obtain a highly stable antibacterial dispersion impregnated with in situ formed silver nanoparticles [J]. Chem. Eng. J., 2020, 381: 122776
doi: 10.1016/j.cej.2019.122776
18 Zhou X, Song Y H, Wang D, et al. Functional nano-fillers in waterborne polyurethane/acrylic composites and the thermal, mechanical, and dielectrical properties [J]. J. Appl. Polym. Sci., 2021, 138: 50822
doi: 10.1002/app.v138.33
19 Santamaria-Echart A, Fernandes I, Barreiro F, et al. Advances in waterborne polyurethane and polyurethane-urea dispersions and their eco-friendly derivatives: a review [J]. Polymers (Basel), 2021, 13: 409
doi: 10.3390/polym13030409
20 Mirmohseni A, Akbari M, Najjar R, et al. Self-healing waterborne polyurethane coating by pH-dependent triggered-release mechanism [J]. J. Appl. Polym. Sci., 2019, 136: 47082
doi: 10.1002/app.v136.8
21 Zuo S S, Xu H, Peng Z J, et al. Study on epoxy resin-organic silicon composite modified waterborne polyurethane temperature-resistant anticorrosive coating [J]. China Plast. Ind., 2020, 48(4): 53
左莎莎, 徐 惠, 彭振军 等. 环氧树脂-有机硅复合改性水性聚氨酯耐温防腐涂料的研究 [J]. 塑料工业, 2020, 48(4): 53
22 Yang Y K, Wang X, Zhao X Y. Functionalization and properties of waterborne polyurethane coatings [J]. Appl. Chem. Ind., 2020, 49: 1039
杨玉坤, 王 鑫, 赵雄燕. 水性聚氨酯涂料的功能化及性能 [J]. 应用化工, 2020, 49: 1039
23 Li H, Fan H J, Lin Z X, et al. Research on abrasive resistance and self-matting properties of silicone-modified waterborne polyurethane coating [J]. Paint Coat. Ind., 2022, 52(8): 1
李 恒, 范浩军, 林智贤 等. 有机硅改性水性聚氨酯涂层耐磨自消光性能研究 [J]. 涂料工业, 2022, 52(8): 1
24 Wang G L, Yang F X, Chai L, et al. Preparation and properties of SiO2 aerogel thermal insulation packaging material [J]. J. Funct. Mater., 2022, 53: 2087
王广林, 杨福馨, 柴 莉 等. SiO2气凝胶隔热保温包装材料的制备及其性能研究 [J]. 功能材料, 2022, 53: 2087
doi: 10.3969/j.issn.1001-9731.2022.02.013
25 Chen Y X, Klima K M, Brouwers H J H, et al. Effect of silica aerogel on thermal insulation and acoustic absorption of geopolymer foam composites: the role of aerogel particle size [J]. Composites, 2022, 242B: 110048
26 He F, Tao Y P, Wu J Y, et al. Surface modification of aerogel microspheres and its effect on thermal insulation coatings [J]. Trans. Mater. Heat Treat., 2014, 35(11): 144
何 方, 陶艳平, 吴菊英 等. 气凝胶微球表面改性及对隔热涂料的影响 [J]. 材料热处理学报, 2014, 35(11): 144
27 Lu B, Guo D, Lu F. Study of SiO2 aerogel transparent heat-insulation coatings [J]. Paint Coat. Ind., 2012, 42(6): 15
卢 斌, 郭 迪, 卢 峰. SiO2气凝胶透明隔热涂料的研制 [J]. 涂料工业, 2012, 42(6): 15
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] LIANG Shuquan, ZHANG Yong, GUAN Dikai, TAN Xiaoping, TANG Yan, MAO Zhiwei. EFFECT OF ROLLING TEMPERATURE ON MICROSTRUCTURE AND PERFORMANCES OF Al-Mg-Sn-Bi-Ga-In ALLOY ANODE[J]. 中国腐蚀与防护学报, 2010, 30(4): 295-299.
No Suggested Reading articles found!