Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (5): 779-784    DOI: 10.11902/1005.4537.2021.244
Current Issue | Archive | Adv Search |
Effect of pH on Electrochemical Corrosion and Stress Corrosion Behavior of X100 Pipeline Steel in CO32-/HCO3- Solutions
LI Kexuan1, SONG Longfei2,3(), LI Xiaorong4
1.School of Materials and Chemical Engineering, Ningbo University of Engineering, Ningbo 315211, China
2.School of Chemistry and Chemical Engineering,Guangzhou University, Guangzhou 510006, China
3.Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
4.Dagang Oilfield, Tianjin Construction Group Company Limited, Tianjin 300272, China
Download:  HTML  PDF(5148KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of pH value on the electrochemical corrosion and stress corrosion of X100 pipeline steel in CO32-/HCO3- containing solutions were studied by means of measurements of potentiodynamic polarization curve, AC impedance spectrum and Mott-Schottky curve, as well as slow strain rate tensile test. The results showed that with the increasing pH value, the thickness and compactness of the formed passive film and the pitting potential of X100 pipeline steel increase, while its SCC sensitivity reduces to certain extent.

Key words:  X100 pipeline steel      stress corrosion      pH value      surface     
Received:  18 September 2021     
ZTFLH:  TG174  
Fund: Scientific Research Fund of Ningbo University of Engineering
Corresponding Authors:  SONG Longfei     E-mail:  songlongfei@gzhu.edu.cn
About author:  SONG Longfei, E-mail: songlongfei@gzhu.edu.cn

Cite this article: 

LI Kexuan, SONG Longfei, LI Xiaorong. Effect of pH on Electrochemical Corrosion and Stress Corrosion Behavior of X100 Pipeline Steel in CO32-/HCO3- Solutions. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 779-784.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.244     OR     https://www.jcscp.org/EN/Y2022/V42/I5/779

ProportionNaHCO3Na2CO3pH
1 mol/L0.1508.55
2 mol/L0.10.059.62
3 mol/L0.050.110.53
4 mol/L00.1511.58
Table 1  Proportions and pH values of four NaHCO3/Na2CO3 test solutions
Fig.1  Sizes of the sample used in slow strain rate test
Fig.2  Fast and slow scanning dynamic potential polarization curves of X100 pipeline steel in CO32-/HCO3- solutions with pH values is 8.55 (a), 9.62 (b), 10.58 (c) and 11.55 (d)
Fig.3  Corrosion potentials obtained by fitting fast and slow scanning polarization curves of X100 pipeline steel
Fig.4  Nyquist (a), Bode (b) and phase angle (c) plots, equivalent circuit diagram and fitting Rct values (d) of X100 pipeline steel in CO32-/HCO3- solutions with different pH values
Fig.5  Mott-Schottky curves of X100 pipeline steel in CO32-/HCO3- solutions with different pH values
Fig.6  Effects of pH value on density and thickness of surface corrosion layer formed on X100 pipeline steel in CO32-/HCO3- solutions
Fig.7  Stress-strain curves (a) and stress corrosion cracking susceptibilities (b) of X100 pipeline steel in CO32-/HCO3- solutions with different pH values
Fig.8  Fracture morphologies of X100 pipeline steel after slow strain rate test in CO32-/HCO3- solutions with pH values of 8.55 (a), 9.62 (b), 10.58 (c) and 11.55 (d)
1 Yu D Y, Liu Z Y, Du C W, et al. Research progress and prospect of stress corrosion cracking of pipeline steel in soil environments [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 737
余德远, 刘智勇, 杜翠薇 等. 管线钢土壤应力腐蚀开裂研究进展及展望 [J]. 中国腐蚀与防护学报, 2021, 41: 737
2 Zhu L X, Jia H D, Luo J H, et al. Effect of applied potential on stress corrosion behavior of X80 pipeline steel and its weld joint in a simulated liquor of soil at Lunnan area of Xinjiang [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 325
朱丽霞, 贾海东, 罗金恒 等. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 325
3 Wang X H, Yang Y, Chen Y C, et al. Effect of alternating current on corrosion behavior of X100 pipeline steel in a simulated solution for soil medium at Korla district [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 259
王新华, 杨永, 陈迎春 等. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 259
4 Xu X X, Cheng H L, Wu W, et al. Stress corrosion cracking behavior and mechanism of Fe-Mn-Al-C-Ni high specific strength steel in the marine atmospheric environment [J]. Corros. Sci., 2021, 191: 109760
doi: 10.1016/j.corsci.2021.109760
5 Song L F, Liu Z Y, Li X G, et al. Characteristics of hydrogen embrittlement in high-pH stress corrosion cracking of X100 pipeline steel in carbonate/ bicarbonate solution [J]. Constr. Build. Mater., 2020, 263: 120124
doi: 10.1016/j.conbuildmat.2020.120124
6 Li Y, Liu Z Y, Fan E D, et al. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Res. Technol., 2021, 64: 141
7 Fan L, Li X G, Du C W, et al. Electrochemical behavior of passive films formed on X80 pipeline steel in various concentrated NaHCO3 solutions [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 322
范林, 李晓刚, 杜翠薇 等. X80管线钢钝化膜在各种高浓度NaHCO3溶液中的电化学行为 [J]. 中国腐蚀与防护学报, 2012, 32: 322
8 Fan L, Du C W, Liu Z Y, et al. Stress corrosion cracking of X80 pipeline steel exposed to high pH solutions with different concentrations of bicarbonate [J]. Int. J. Miner. Metall. Mater., 2013, 20: 645
doi: 10.1007/s12613-013-0778-4
9 Huang W H, Yen H W, Lee Y L. Corrosion behavior and surface analysis of 690 MPa-grade offshore steels in chloride media [J]. J. Mater. Res. Technol., 2019, 8: 1476
doi: 10.1016/j.jmrt.2018.11.002
10 Williamson J, Isgor O B. The effect of simulated concrete pore solution composition and chlorides on the electronic properties of passive films on carbon steel rebar [J]. Corros. Sci., 2016, 106: 82
doi: 10.1016/j.corsci.2016.01.027
11 Seifert H P, Ritter S. The influence of ppb levels of chloride impurities on the strain-induced corrosion cracking and corrosion fatigue crack growth behavior of low-alloy steels under simulated boiling water reactor conditions [J]. Corros. Sci., 2016, 108: 148
doi: 10.1016/j.corsci.2016.03.010
12 Gadala I M, Alfantazi A. A study of X100 pipeline steel passivation in mildly alkaline bicarbonate solutions using electrochemical impedance spectroscopy under potentiodynamic conditions and Mott-Schottky [J]. Appl. Surf. Sci., 2015, 357: 356
doi: 10.1016/j.apsusc.2015.09.029
13 Li Y, Cheng Y F. Passive film growth on carbon steel and its nanoscale features at various passivating potentials [J]. Appl. Surf. Sci., 2017, 396: 144
doi: 10.1016/j.apsusc.2016.11.046
14 Ran D, Meng H M, Liu X, et al. Effect of pH on corrosion behavior of 14Cr12Ni3WMoV stainless steel in chlorine-containing solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 51
冉斗, 孟惠民, 刘星 等. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 51
15 Sun B Z, Liu Z Y, He Y D, et al. A new study for healing pitting defects of 316L stainless steel based on microarc technology [J]. Corros. Sci., 2021, 187: 109505
doi: 10.1016/j.corsci.2021.109505
16 Cui L Y, Liu Z Y, Xu D K, et al. The study of microbiologically influenced corrosion of 2205 duplex stainless steel based on high-resolution characterization [J]. Corros. Sci., 2020, 174: 108842
doi: 10.1016/j.corsci.2020.108842
17 Liu Z Y, Lu L, Huang Y Z, et al. Mechanistic aspect of non-steady electrochemical characteristic during stress corrosion cracking of an X70 pipeline steel in simulated underground water [J]. Corrosion, 2014, 70: 678
doi: 10.5006/1153
18 Zhao T L, Wang S Q, Liu Z Y, et al. Effect of cathodic polarisation on stress corrosion cracking behaviour of a Ni (Fe, Al)-maraging steel in artificial seawater [J]. Corros. Sci., 2021, 179: 109176
doi: 10.1016/j.corsci.2020.109176
19 Cheng Y F. Fundamentals of hydrogen evolution reaction and its implications on near-neutral pH stress corrosion cracking of pipelines [J]. Electrochim. Acta, 2007, 52: 2661
doi: 10.1016/j.electacta.2006.09.024
20 Fu A Q, Cheng Y F. Electrochemical polarization behavior of X70 steel in thin carbonate/bicarbonate solution layers trapped under a disbonded coating and its implication on pipeline SCC [J]. Corros, Sci., 2010, 52: 2511
21 Liu Z Y, Hao W K, Wu W, et al. Fundamental investigation of stress corrosion cracking of E690 steel in simulated marine thin electrolyte layer [J]. Corros. Sci., 2019, 148: 388
doi: 10.1016/j.corsci.2018.12.029
[1] SHI Jian, HU Xuewen, HE Bo, YANG Zheng, WANG Fei, GUO Rui. Surface Stabilization and Rust Structure of Weathering Steel[J]. 中国腐蚀与防护学报, 2022, 42(5): 856-860.
[2] LIU Yutong, CHEN Zhenyu, ZHU Zhongliang, FENG Rui, BAO Hansheng, ZHANG Naiqiang. SCC Susceptibility of 2.25Cr1Mo Steel and Its Weld Joints in High Temperature Steam[J]. 中国腐蚀与防护学报, 2022, 42(4): 647-654.
[3] LIU Baoping, ZHANG Zhiming, WANG Jianqiu, HAN En-Hou, KE Wei. Review of Stress Corrosion Crack Initiation of Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2022, 42(4): 513-522.
[4] CAI Jianmin, GUAN Lei, LI Yu. Effect of Surface Treatment on Galvanic Corrosion of 6061 Al-alloy and DC01 Carbon Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 281-287.
[5] LIANG Taihe, ZHU Xuemei, ZHANG Zhenwei, WANG Xinjian, ZHANG Yansheng. Corrosion Performance of Transition Layer at Interface of Oxide Scale/substrate Formed on Austenitic Steel Fe32Mn7Cr3Al2Si During High Temperature Oxidation[J]. 中国腐蚀与防护学报, 2022, 42(2): 317-323.
[6] LIU Haochen, FAN Lin, ZHANG Haibing, WANG Yingying, TANG Junlei, BAI Xuehan, SUN Mingxian. Research Progress of Stress Corrosion Cracking of Ti-alloy in Deep Sea Environments[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[7] DING Cong, ZHANG Jinling, YU Yanchong, LI Yelei, WANG Shebin. Corrosion Kinetics of A572Gr.65 Steel in Different Simulated Soil Solutions[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[8] ZHU Hailin, LU Xiaomeng, LI Xiaofen, WANG Junxia, LIU Jianhua, FENG Li, MA Xuemei, HU Zhiyong. Synthesis, Corrosion Inhibition and Bactericidal Performance of an Ammonium Salt Surfactant Containing Thiadiazole[J]. 中国腐蚀与防护学报, 2022, 42(1): 51-59.
[9] ZHANG Chengdong, LIU Bin, SHI Zeyao, LIU Yan, CAO Qingmin, JIAN Donghui. Research Progress in Corrosion Behavior of Nickel Aluminum Bronze Alloys in Seawater[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[10] YIN Xubao, LI Yuqiao, GAO Rongjie. Preparation of Superhydrophobic Surface on Copper Substrate and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[11] YU Deyuan, LIU Zhiyong, DU Cuiwei, HUANG Hui, LIN Nan. Research Progress and Prospect of Stress Corrosion Cracking of Pipeline Steel in Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(6): 737-747.
[12] SUN Baozhuang, ZHOU Xiaocheng, LI Xiaorong, SUN Weilu, LIU Zirui, WANG Yuhua, HU Yang, LIU Zhiyong. Stress Corrosion Cracking Behavior of 316L Stainless Steel with Varying Microstructure in Ammonium Chloride Environment[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[13] LIU Xing, RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, LONG Bin. Effect of Surface State on Corrosion Resistance of TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[14] SONG Qining, WU Zhuyu, LI Huilin, TONG Yao, XU Nan, BAO Yefeng. Effect of Laser Surface Melting on Cavitation Erosion of Manganese-nickel-aluminum Bronze in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(6): 877-882.
[15] WANG Jia, LIU Xiaoyong, GAO Lingqing, ZHA Xiaoqin, LUO Xianfu, ZHANG Wenli, ZHANG Hengkun. Hydrogen Absorption Behavior of Near α Ti70 Alloy[J]. 中国腐蚀与防护学报, 2021, 41(4): 549-554.
No Suggested Reading articles found!