Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (1): 149-155    DOI: 10.11902/1005.4537.2020.251
Current Issue | Archive | Adv Search |
Corrosion Kinetics of A572Gr.65 Steel in Different Simulated Soil Solutions
DING Cong, ZHANG Jinling(), YU Yanchong, LI Yelei, WANG Shebin
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Download:  HTML  PDF(5109KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of A572Gr.65 steel in various artificial soil solutions was studied by means of electrochemical workstation, scanning electron microscopy (SEM), X-ray diffractometer (XRD) and other techniques. The results show that with the increase of pH value, the polarization resistance of A572Gr.65 steel also increases, meanwhile the free-corrosion potential of A572Gr.65 steel moves positively, while the free-corrosion current density decreases. The corrosion resistance of steel in alkaline solution is the best. When the solution is acidic, the main corrosion product is γ-FeOOH. High concentration of H+ can promote the generation of impedance arc and destroy the passive film on the surface of A572Gr.65 steel. In addition, H+ will generate hydrogen in the reaction process, make corrosion products loose, and accelerate the corrosion process. In this process, the hydrogen evolution reaction of cathode is the controlling step for the whole process. When the pH value becomes neutral or alkaline gradually, OH- will promote the transformation of γ-FeOOH to dense Fe3O4 and α-FeOOH. The dense corrosion products will hinder the diffusion of corrosive ions and dissolved oxygen, protect the substrate effectively and slow down the progress of corrosion. In this process, the formation of corrosion active points on the metal surface and the dissolution rate of anode are the controlling step for the whole process.

Key words:  A572Gr.65 steel      polarization curve      electrochemistry impedance spectroscopy      pH value      corrosion kinetics      soil corrosion     
Received:  02 December 2020     
ZTFLH:  TG174.3  
Fund: National Natural Science Foundation of China(52004180);Shanxi General Youth Fund Project
Corresponding Authors:  ZHANG Jinling     E-mail:  zhjlty@163.com
About author:  ZHANG Jinling, E-mail: zhjlty@163.com

Cite this article: 

DING Cong, ZHANG Jinling, YU Yanchong, LI Yelei, WANG Shebin. Corrosion Kinetics of A572Gr.65 Steel in Different Simulated Soil Solutions. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 149-155.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.251     OR     https://www.jcscp.org/EN/Y2022/V42/I1/149

Fig.1  Polarization curves of A572Gr.65 steel in soil simulation solutions with different pH values
pHEcorr / VIcorr / A·cm-2
4-0.8333.15×10-4
6-0.7074.26×10-5
7-0.3421.05×10-6
8-0.3401.69×10-6
10-0.3024.21×10-7
Table 1  Fitting results of polarization curves of A572Gr.65 steel in soil simulation solutions with different pH values
Fig.2  Impedance spectra of A572Gr.65 steel in soil simulation solutions with pH4 (a),pH10 (b) and pH6, 7, 8 (c)
Fig.3  Fitting circuit diagrams of EIS of A572Gr.65 steel in soil simulation solutions with pH6, 7, 8, 10 (a) and pH4 (b)
pHRsΩ·cm2CPE-TCPE-PRpΩ·cm2L1R1Ω·cm2
4214.12.64×10-40.6943201.352.6291.6
6470.55.18×10-40.77131966------
7465.91.34×10-40.75453743------
8355.21.01×10-40.78833769------
10359.32.57×10-50.8801140250------
Table 2  Fitting parameters of EIS of A572Gr.65 steel
Fig.4  Bode plots of A572Gr.65 steel in soil simulation solutions with different pH values
Fig.5  XRD patterns of corrosion products of A572Gr.65 steel in soil simulation solutions with different pH values
Fig.6  Electrochemical corrosion morphologies of A572Gr.65 steel in soil simulated solutions with pH4 (a); pH6 (b); pH7 (c); pH8 (d) and pH10 (e)
Fig.7  Corrosion mechanism of A572Gr.65 steel in soil simulated solutions: (a) acid solution; (b) alkaline solution
1 Guo H F, Zhang Z K, Zhang Z W. Analysis of the causes of bending cracking of A572Gr50 steel [J]. Tianjin Metall., 2019, (5): 49
郭海峰, 张志克, 张植伟. A572Gr50钢折弯开裂原因分析 [J]. 天津冶金, 2019, (5): 49
2 Zhu Y C, Liu G M, Liu X, et al. Investigation on interrelation of field corrosion test and accelerated corrosion test of grounding materials in red soil environment [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 550
朱亦晨, 刘光明, 刘欣等. 红壤地区接地材料现场埋样与加速腐蚀实验的相关性研究 [J]. 中国腐蚀与防护学报, 2019, 39: 550
3 Tang R M, Zhu Y C, Liu G M, et al. Gray correlative degree analysis of Q235 steel/conductive concrete corrosion in three typical soil environments [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 110
唐荣茂, 朱亦晨, 刘光明等. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析 [J]. 中国腐蚀与防护学报, 2021, 41: 110
4 Xu C M, Yang D P, Zhang L Z, et al. Effect of SRB on corrosion behavior of X100 steel in simulated solution of Yingtan soil [J]. J. Mater. Eng., 2015, 43(6): 71
胥聪敏, 杨东平, 张灵芝等. SRB对X100钢在鹰潭土壤模拟溶液中腐蚀行为的影响 [J]. 材料工程, 2015, 43(6): 71
5 Zhang X M, Zhang J L, Yu Y C, et al. Effect of deposition time on corrosion resistance of Al-coated AZ31 magnesium alloy [J]. Surf. Technol., 2019, 48(10): 251
张晓敏, 张金玲, 于彦冲等. 沉积时间对镀铝层AZ31镁合金耐蚀性的影响 [J]. 表面技术, 2019, 48(10): 251
6 Wang S X, Yin X L, Zhang H, et al. Coupling effects of pH and dissolved oxygen on the corrosion behavior and mechanism of X80 steel in acidic soil simulated solution [J]. Materials, 2019, 12: 3175
7 Dai Y, Zhang J L, Yu Y C, et al. Influence of rare earth on electrochemical corrosion behavior of A572 Gr.65 steel [J]. Surf. Technol., 2020, 49(8): 217
戴玥, 张金玲, 于彦冲等. 稀土对A572 Gr.65钢电化学腐蚀行为的影响 [J]. 表面技术, 2020, 49(8): 217
8 Zhang Q L, Xue M H, Wang D, et al. Effect of CO32- concentration on the corrosion behavior of X80 pipeline steel in simulated soil Solution [J]. Int. J. Electrochem. Sci., 2020, 15: 4592
9 Wang F, Huang T, Chen X P, et al. Corrosion behavior of X65 pipeline steel in simulated soil [J]. Corros. Prot., 2017, 38: 331
王帆, 黄涛, 陈小平等. X65管线钢在模拟土壤中的腐蚀行为 [J]. 腐蚀与防护, 2017, 38: 331
10 Zhao T L, Lu W, Lv H W, et al. Electrochemical corrosion behavior of 10# carbon steel in NaOH solution [J]. Corros. Prot., 2018, 39: 833
赵天雷, 路伟, 吕海武等. 10号碳钢在NaOH溶液中的腐蚀电化学行为 [J]. 腐蚀与防护, 2018, 39: 833
11 Zhang L, Du C W, Li X G. Effects of temperature, oxygen concentration and pH value on electrochemical behavior of X70 pipeline steel [J]. Heat Treat. Met., 2008, 33(11): 36
张亮, 杜翠薇, 李晓刚. 温度、pH值和氧浓度对X70管线钢电化学行为的影响 [J]. 金属热处理, 2008, 33(11): 36
12 Li X J, Gui F, Cong H B, et al. Evaluation of nitrate and nitrite reduction kinetics related to liquid-air-interface corrosion [J]. Electrochim. Acta, 2014, 117: 299
13 Zhou Y, Zhang P, Huang H J, et al. The effects of pH values on functional mechanisms of nitrite anions for Q235 carbon steels in 0.01 mol·L-1 NaNO2-HCl solutions [J]. J. Braz. Chem. Soc., 2019, 30: 1688
14 Zhou Y, Zuo Y. The passivation behavior of mild steel in CO2 saturated solution containing nitrite anions [J]. J. Electrochem. Soc., 2015, 162: C47
15 Wang Y F, Cheng G X, Wu W, et al. Effect of pH and chloride on the micro-mechanism of pitting corrosion for high strength pipeline steel in aerated NaCl solutions [J]. Appl. Surf. Sci., 2015, 349: 746
16 Mu L J, Zhang J, Zhao W Z, et al. Corrosion behavior of J55 steel in NaHCO3 solution [J]. Mater. Mech. Eng., 2010, 34(8): 15
慕立俊, 张军, 赵文轸等. J55钢在NaHCO3溶液中的腐蚀行为 [J]. 机械工程材料, 2010, 34(8): 15
17 Keddam M, Kuntz C, Takenouti H, et al. Exfoliation corrosion of aluminum alloys examined by electrode impedance [J]. Electrochim. Acta, 1997, 42: 87
18 Cao C N, Wang J, Lin H C. Effect of Cl- ion on the impedance of passive-film-covered electrodes [J]. J. Chin. Soc. Corros. Prot., 1989, 9: 261
曹楚南, 王佳, 林海潮. 氯离子对钝态金属电极阻抗频谱的影响 [J]. 中国腐蚀与防护学报, 1989, 9: 261
19 Guo H. Study on catalytic phase transformation mechanism of ferric hydroxide/oxohydroxides [D]. Shijiazhuang: Hebei Normal University, 2006
郭慧. 氢氧化铁和羟基氧化铁的催化相转化机理研究 [D]. 石家庄: 河北师范大学, 2006
20 Wan J J. Research on the corrosion behaviors and mechanism of A517Gr.Q steel in simulated seawater [D]. Xi'an: Xi'an University of Technology, 2017
万金剑. 高强钢A517Gr.Q在模拟海水中的腐蚀行为及机理研究 [D]. 西安: 西安理工大学, 2017
21 Garcia K E, Morales A L, Barrero C A, et al. New contributions to the understanding of rust layer formation in steels exposed to a total immersion test [J]. Corros. Sci., 2006, 48: 2813
22 Takemura M, Fujita S, Morita K, et al. Protectiveness of rust formed on weathering steel in atmosphere rich in air-born chloride particles [J]. Zairyo-to-Kankyo, 2000, 49: 72
23 Ishikawa T, Miyamoto S, Kandori K, et al. Influence of anions on the formation of β-FeOOH rusts [J]. Corros. Sci., 2005, 47: 2510
24 Kamimura T, Nasu S, Segi T, et al. Influence of cations and anions on the formation of β-FeOOH [J]. Corros. Sci., 2005, 47: 2531
25 Ramana K V S, Kaliappan S, Ramanathan N, et al. Characterization of rust phases formed on low carbon steel exposed to natural marine environment of Chennai harbour-South India [J]. Mater. Corros., 2007, 58: 873
26 Katayama H, Yamamoto M, Kodama T. Degradation behavior of protective rust layer in chloride solution [J]. Zairyo-to-Kankyo, 2000, 49: 41
[1] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] LI Ziyun, WANG Gui, LUO Siwei, DENG Peichang, HU Jiezhen, DENG Junhao, XU Jingming. Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[3] SUN Shuo, YANG Jie, QIAN Xinzhu, CHANG Renli. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[4] ZHU Yichen,LIU Guangming,LIU Xin,PEI Feng,TIAN Xu,SHI Chao. Investigation on Interrelation of Field Corrosion Test and Accelerated Corrosion Test of Grounding Materials in Red Soil Environment[J]. 中国腐蚀与防护学报, 2019, 39(6): 550-556.
[5] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[6] Xin LI,Xu CHEN,Wuqi SONG,Jiaxing YANG,Ming WU. Effect of pH Value on Microbial Corrosion Behavior of X70 Steel in a Sea Mud Extract Simulated Solution[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[7] Xiankang ZHONG,Junying HU. Corrosion Behavior of X65 Carbon Steel in CO2Containing Liquids with Constant pH and Ferrous Ion Concentration[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[8] Yue QIAO, Zhiping ZHU, Lei YANG, Zhifeng LIU. Monitoring and Simulated Experiments of Oxidation-Reduction Potential of Boiler Feedwater at High Temperatures[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[9] Mingyuan JIAO, Weiliang JIN, Jianghong MAO, Teng LI, Jin XIA. Effect of Concrete Inner Environment on Hydrogen Evolution of Rebar During ElectrochemicalRemediation[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[10] Zengyi SONG, Li LIU, Li DENG, Yuan SUN, Yizhou ZHOU. Electrochemical Dissolution Behavior of N5 Nickel-based Single Crystal Superalloy in Aqua Regia Electrolyte[J]. 中国腐蚀与防护学报, 2018, 38(4): 365-372.
[11] Libao YU, Maocheng YAN, Binbin WANG, Yun SHU, Jin XU, Cheng SUN. Microbial Corrosion of Q235 Steel in Acidic Red Soil Environment[J]. 中国腐蚀与防护学报, 2018, 38(1): 10-17.
[12] Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[13] Teng LI, Weiliang JIN, Chen XU, Jianghong MAO. Determination of Steady Critical Current Density of Hydrogen Evolution During Electrochemical Repair Process of Reinforced Concrete[J]. 中国腐蚀与防护学报, 2017, 37(4): 382-388.
[14] Yun DAI,Shengdan LIU,Yunlai DENG,Xinming ZHANG. Pitting Corrosion of 7020 Aluminum Alloy in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(3): 279-286.
[15] Zhixiao XU,Herong ZHOU,Wang YAO. Corrosion Behavior of Automotive Cold Rolled Steels DC06 and DP600 in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(2): 155-161.
No Suggested Reading articles found!