Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (1): 143-148    DOI: 10.11902/1005.4537.2020.257
Current Issue | Archive | Adv Search |
Effect of Temperature on Pitting Corrosion Behavior of 316L Stainless Steel in Oilfield Wastewater
ZHANG Wenli1, ZHANG Zhenlong2, WU Zhaoliang2, HAN Sike1, CUI Zhongyu1()
1.School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
2.Xinjiang Baomo Environmental Engineering Co. Ltd. , Karamay 834000, China
Download:  HTML  PDF(3028KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of 316L stainless steel in an artificial oilfield wastewater at different temperatures was studied by potentiodynamic polarization measurement and SEM analysis. At the same time, the point defect model (PDM) was used to explain the pitting corrosion behavior of stainless steel. The results show that as the temperature of the oilfield wastewater increases, the pitting sensitivity increases and the pitting potential decreases for the 316L stainless steel. The experimental results of the pitting potential and the square root of the potential scanning rate at different temperatures were analyzed by PDM. The PDM combined with the competitive adsorption theory and the formation mechanism of cation vacancies at the passive film/solution interface can successfully explain the results of this paper.

Key words:  316L stainless steel      oilfield wastewater      pitting corrosion      point defect model     
Received:  09 December 2020     
ZTFLH:  TG172  
Fund: Key R&D Program Public Welfare Special Fund Shandong Province(2019GHY112050)
Corresponding Authors:  CUI Zhongyu     E-mail:  cuizhongyu@ouc.edu.cn
About author:  CUI Zhongyu, E-mail: cuizhongyu@ouc.edu.cn

Cite this article: 

ZHANG Wenli, ZHANG Zhenlong, WU Zhaoliang, HAN Sike, CUI Zhongyu. Effect of Temperature on Pitting Corrosion Behavior of 316L Stainless Steel in Oilfield Wastewater. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 143-148.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.257     OR     https://www.jcscp.org/EN/Y2022/V42/I1/143

Fig.1  Potentiodynamic polarization curves of 316L stainless steel in oilfield wastewater at different temperatures
Fig.2  Potentiodynamic polarization curves of 316L stainless steel repeated for 20 times in oilfield wastewater at 20 ℃ (a), 40 ℃ (b), 60 ℃ (c) and 80 ℃ (d)
Fig.3  Statistics results of Vc of 316L stainless steel repeated for 20 times in oilfield wastewater at 20 ℃ (a), 40 ℃ (b), 60 ℃ (c) and 80 ℃ (d)
Fig.4  Cumulative probability distribution of pitting potential of 316L stainless steel in oilfield wastewater at different temperatures
Fig.5  Relationship between critical pitting potential (mean value) and chloride ion concentration of 316L stainless steel in oilfield wastewater at different temperatures
Temperature / ℃αξ
200.21535.0×1012
400.33283.6×1012
600.24203.2×1012
800.41208.3×1012
Table 1  Polarizability and cation vacancy density of 316L stainless steel in oilfield wastewater at different temperatures
Fig.6  Relationship between the average pitting potential of 316L stainless steel in oilfield wastewater at different temperatures and the potential scanning rate
Fig.7  Pitting corrosion morphologies of 316 stainless steel after polarization at 20 ℃ (a), 40 ℃ (b), 60 ℃ (c) and 80 ℃ (d)
1 Zhao G X, Huang J, Xue Y. Corrosion behavior of materials used for surface gathering and transportation pipeline in an oilfield [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 557
赵国仙, 黄静, 薛艳. 某油田地面集输管道用材腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 557
2 Ai F F, Chen Y Q, Zhong B, et al. Stress corrosion cracking behavior of T95 oil well pipe steel in sour environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 469
艾芳芳, 陈义庆, 钟彬等. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制 [J]. 中国腐蚀与防护学报, 2020, 40: 469
3 Wang L W, Liang J M, Li H, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl- [J]. Corros. Sci., 2021, 178: 109076
4 Yi Y, Cho P, Al Zaabi A, et al. Potentiodynamic polarization behaviour of AISI type 316 stainless steel in NaCl solution [J]. Corros. Sci., 2013, 74: 92
5 Wang J H, Su C C, Szklarska-Smialowska Z. Effects of Cl- concentration and temperature on pitting of AISI 304 stainless steel [J]. Corrosion, 1988, 44: 732
6 Lei K S, Macdonald D D, Pound B G, et al. Breakdown of the passive film on polycrystal and single crystal (100) nickel by chloride [J]. J. Electrochem. Soc., 1988, 135: 1625
7 Macdonald D D, Urquidi‐Macdonald M. Theory of steady‐state passive films [J]. J. Electrochem. Soc., 1990, 137: 2395
8 Fonseca I T E, Lima N, Rodrigues J A, et al. Passivity breakdown of Al 2024-T3 alloy in chloride solutions: A test of the point defect model [J]. Electrochem. Commun., 2002, 4: 353
9 Liu Z J, Cheng X Q, Li X G, et al. Application of PDM (Point Defect Model) on 2205 duplex stainless steel [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 90
刘佐嘉, 程学群, 李晓刚等. 点缺陷模型在2205双相不锈钢中的应用 [J]. 中国腐蚀与防护学报, 2013, 33: 90
10 Liu Z J, Cheng X Q, Liu X H, et al. Calculation and analysis of diffusivity of point defects in passive film formed on 2205 duplex stainless steel and 316L austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 273
刘佐嘉, 程学群, 刘小辉等. 2205双相不锈钢与316L奥氏体不锈钢钝化膜内点缺陷扩散系数的计算分析 [J]. 中国腐蚀与防护学报, 2010, 30: 273
11 Aghuy A A, Zakeri M, Moayed M H, et al. Effect of grain size on pitting corrosion of 304L austenitic stainless steel [J]. Corros. Sci., 2015, 94: 368
12 Wang J M, Qian S S, Li Y H, et al. Passivity breakdown on 436 ferritic stainless steel in solutions containing chloride [J]. J. Mater. Sci. Technol., 2019, 35: 637
13 Al Saadi S, Yi Y S, Cho P, et al. Passivity breakdown of 316L stainless steel during potentiodynamic polarization in NaCl solution [J]. Corros. Sci., 2016, 111: 720
14 Dong C F, Luo H, Xiao K, et al. Effect of temperature and Cl- concentration on pitting of 2205 duplex stainless steel [J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2011, 26: 641
15 Sharifi-Asl S, Mao F X, Lu P, et al. Exploration of the effect of chloride ion concentration and temperature on pitting corrosion of carbon steel in saturated Ca(OH)2 solution [J]. Corros. Sci., 2015, 98: 708
16 Breslin C B, Macdonald D D, Sikora J, et al. Influence of uv light on the passive behaviour of SS316-effect of prior illumination [J]. Electrochim. Acta, 1997, 42: 127
17 Dong C F, Mao F X, Gao S J, et al. Passivity breakdown on copper: influence of temperature [J]. J. Electrochem. Soc., 2016, 163: C707
18 Zhang Y C, Macdonald D D, Urquidi-Macdonald M, et al. Passivity breakdown on AISI Type 403 stainless steel in chloride-containing borate buffer solution [J]. Corros. Sci., 2006, 48: 3812
19 Haruna T, Macdonald D D. Theoretical prediction of the scan rate dependencies of the pitting potential and the probability distribution in the induction time [J]. J. Electrochem. Soc., 1997, 144: 1574
20 Poursaee A. Determining the appropriate scan rate to perform cyclic polarization test on the steel bars in concrete [J]. Electrochim. Acta, 2010, 55: 1200
21 Yang S, Engelhardt G, Macdonald D D. Passivity breakdown and evolution of localized corrosion on type 316L stainless steel [A]. Proceedings of the 210th ECS Conference [C]. Cancun, Mexico, 2006: 3
[1] CHENG Qidong, WANG Yanhua. Effect of Surface Scratches on Corrosion Behavior of 304 Stainless Steel Beneath Droplets of Solution (0.5 mol/L NaCl+0.25 mol/L MgCl2)[J]. 中国腐蚀与防护学报, 2022, 42(1): 99-105.
[2] AN Yiqiang, WANG Xin, CUI Zhongyu. Effect of Nitric Acid Passivation on Critical Cl- Concentration for Corrosion of 304 Stainless Steel in Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[3] SUN Baozhuang, ZHOU Xiaocheng, LI Xiaorong, SUN Weilu, LIU Zirui, WANG Yuhua, HU Yang, LIU Zhiyong. Stress Corrosion Cracking Behavior of 316L Stainless Steel with Varying Microstructure in Ammonium Chloride Environment[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[4] ZHANG Xin, LIN Muyan, YANG Guangheng, WANG Zehua, SHAO Jia, ZHOU Zehua. Effect of Er on Corrosion Behavior of Marine Engineering 5052 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[5] GAI Xipeng, LEI Li, CUI Zhongyu. Pitting Corrosion Behavior of 304 Stainless Steel in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[6] ZHANG Longhua, LI Changjun, PAN Lei, HAN Sike, WANG Xin, CUI Zhongyu. Corrosion Behavior of 316L Stainless Steel in Simulated Oilfield Wastewater[J]. 中国腐蚀与防护学报, 2021, 41(5): 625-632.
[7] YI Guanghui, ZHENG Dajiang, SONG Guangling. Influence of Acid Pickling on Morphology, Optical Parameters and Corrosion Resistance of 316L Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(4): 461-468.
[8] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[9] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[10] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[11] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[12] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[13] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[14] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[15] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
No Suggested Reading articles found!