|
|
Research Progress of Biocides for Microbiologically Influenced Corrosion |
HE Yongjun1, ZHANG Tiansui2, WANG Haitao3, ZHANG Fei2, LI Guangfang2, LIU Hongfang2( ) |
1.SINOPEC Sales Co. Ltd. , (South China), Guangzhou 510000, China 2.Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 3.China Special Equipment Inspection and Research Institute (CSEI), Beijing 100029, China |
|
|
Abstract Based on the research and application of biocides in recently years, the research progress of quaternary ammonium salts biocides, guanidine biocides, heterocyclic biocides and compounds biocides used in the prevention and control of microbiologically influenced corrosion (MIC) in oil and gas fields is reviewed. The MIC induced by fungus and algae as well as the research progress of corresponding biocides are introduced. On this basis, this article summarizes the application, challenges and future development trends of biocides, providing references for the research of microbial corrosion protection and rational use of biocides.
|
Received: 23 September 2020
|
|
Fund: National Key Research and Development Program(2017YFC0805000);Project of SINOPEC(319008-8) |
Corresponding Authors:
LIU Hongfang
E-mail: liuhf@hust.edu.cn
|
About author: LIU Hongfang, E-mail: liuhf@hust.edu.cn
|
1 |
Huang Y L. Corrosion failure of marine steel in sea-mud containing sulfate reducing bacteria [J]. Mater. Corros., 2004, 55: 124
|
2 |
Jia R, Yang D Q, Xu J, et al. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation [J]. Corros. Sci., 2017, 127: 1
|
3 |
Juzeliūnas E, Ramanauskas R, Lugauskas A, et al. Microbially influenced corrosion of zinc and aluminium-Two-year subjection to influence of Aspergillus niger [J]. Corros. Sci., 2007, 49: 4098
|
4 |
Liu H W, Cheng Y F. Microbial corrosion of X52 pipeline steel under soil with varied thicknesses soaked with a simulated soil solution containing sulfate-reducing bacteria and the associated galvanic coupling effect [J]. Electrochim. Acta, 2018, 266: 312
|
5 |
Jia R, Tan J L, Jin P, et al. Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm [J]. Corros. Sci., 2018, 130: 1
|
6 |
Liu H W, Gu T Y, Asif M, et al. The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria [J]. Corros. Sci., 2017, 114: 102
|
7 |
Zhang P Y, Xu D K, Li Y C, et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm [J]. Bioelectrochemistry, 2015, 101: 14
|
8 |
Liu F L, Zhang J, Sun C X, et al. The corrosion of two aluminium sacrificial anode alloys in SRB-containing sea mud [J]. Corros. Sci., 2014, 83: 375
|
9 |
Starosvetsky J, Starosvetsky D, Pokroy B, et al. Electrochemical behaviour of stainless steels in media containing iron-oxidizing bacteria (IOB) by corrosion process modeling [J]. Corros. Sci., 2008, 50: 540
|
10 |
Guan F, Zhai X F, Duan J Z, et al. Influence of sulfate-reducing bacteria on the corrosion behavior of 5052 aluminum alloy [J]. Surf. Coat. Technol., 2017, 316: 171
|
11 |
Liu T, Pan S, Wang Y N, et al. Pseudoalteromonas lipolytica accelerated corrosion of low alloy steel by the endogenous electron mediator pyomelanin [J]. Corros. Sci., 2020, 162: 108215
|
12 |
Videla H. A, Swords C, Edyvean R. Features of SRB-induced corrosion of carbon steel in marine environments [J]. ASTM Spec. Tech. Publ., 2000, 1399: 270
|
13 |
Dai X Y, Wang H, Ju L K, et al. Corrosion of aluminum alloy 2024 caused by Aspergillus niger [J]. Int. Biodeterior. Biodegrad., 2016, 115: 1
|
14 |
Liu H W, Xu D K, Dao A Q, et al. Study of corrosion behavior and mechanism of carbon steel in the presence of Chlorella vulgaris [J]. Corros. Sci., 2015, 101: 84
|
15 |
Xue R, Yao G Y, Teng H K. Situation and developing trend of bactericide in oilfields [J]. Ind. Water Treat., 2007, 27(10): 1
|
|
薛瑞, 姚光源, 滕厚开. 油田杀菌剂研究现状与展望 [J]. 工业水处理, 2007, 27(10): 1
|
16 |
Zhang Q. Research progress on fungicides during ethanol fermentation [J]. Chem. Ind. Eng. Prog., 2016, 35: 1167
|
|
张强. 酒精发酵中杀菌剂的研究进展 [J]. 化工进展, 2016, 35: 1167
|
17 |
Zhang Q D, Zhou G Y, Zhao D F. Research progress of new type bactericides in the oilfield [J]. Guangdong Chem. Ind., 2014, 41(5): 233
|
|
张庆冬, 周国英, 赵东风. 油田用新型杀菌剂的研究进展 [J]. 广东化工, 2014, 41(5): 233
|
18 |
Wang J L, Li C J, Zhang X X, et al. Corrosion behavior of Aspergillus niger on 7075 aluminum alloy and the inhibition effect of zinc pyrithione biocide [J]. J. Electrochem. Soc., 2019, 166: G39
|
19 |
Huang C M, Li R T. Evaluation and optimization of fungicides for water injection system in southern oilfield [J]. Jiangxi Chem. Ind., 2019, (4): 33
|
|
黄春梅, 李瑞涛. 南部油田注水系统杀菌剂的评价与优选 [J]. 江西化工, 2019, (4): 33
|
20 |
Hai X, Liu Z, Yang H K, et al. Research on the resistance of common bacteria in oilfield wastewater to fungicides [J]. Petrochem. Ind. Appl., 2013, 32(10): 97
|
|
海霞, 刘真, 杨宏科等. 油田污水中常见细菌对杀菌剂的抗药性的研究 [J]. 石油化工应用, 2013, 32(10): 97
|
21 |
Yang H K. Application analysis of oilfield fungicides [J]. Chem. Eng. Des. Commun., 2019, 45(3): 34
|
|
杨宏科. 油田杀菌剂的应用分析 [J]. 化工设计通讯, 2019, 45(3): 34
|
22 |
Liu H F, Zheng B J, Xu D D, et al. Effect of sulfate-reducing bacteria and iron-oxidizing bacteria on the rate of corrosion of an aluminum alloy in a central air-conditioning cooling water system [J]. Ind. Eng. Chem. Res., 2014, 53: 7840
|
23 |
Liu H W, Fu C Y, Gu T Y, et al. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water [J]. Corros. Sci., 2015, 100: 484
|
24 |
Rong H, Liu C W, Wen X, et al. Synthesis and properties of an improved biocides of bis-quaternary ammonium salt for the sewage of oil field [J]. J. Beijing Inst. Petro-Chem. Technol., 2014, 22(3): 6
|
|
荣华, 刘超文, 温馨等. 一种改进型双季铵盐油田污水杀菌剂的制备与性能 [J]. 北京石油化工学院学报, 2014, 22(3): 6
|
25 |
Li Z Y, Zhao J M, Zuo Y, et al. Synthesis and properties of quaternary ammonium bis-imidazoline as inhibitor [J]. Corros. Prot., 2004, 25(3): 115
|
|
李志远, 赵景茂, 左禹等. 双咪唑啉季铵盐的合成与缓蚀性能研究 [J]. 腐蚀与防护, 2004, 25(3): 115
|
26 |
Li Z S, Li J F, Liu H, et al. Research progress of surface modification of antibacterial performance of biomedical silicone rubber [J]. Chem. Ind. Eng. Prog., 2018, 37: 4719
|
|
李兆双, 李建芳, 刘鹤等. 生物医用硅橡胶表面抗菌性能改造研究进展 [J]. 化工进展, 2018, 37: 4719
|
27 |
Cavallaro A, Mierczynska A, Barton M, et al. Influence of immobilized quaternary ammonium group surface density on antimicrobial efficacy and cytotoxicity [J]. Biofouling, 2016, 32(1): 13
|
28 |
Zhou X F, Shi R Y. Current state and development trend of cationic bactericides [J]. China Clean. Ind., 2020, (3/4): 187
|
|
周旋峰, 石荣莹. 阳离子杀菌剂的现状及其发展趋势 [J]. 中国洗涤用品工业, 2020, (3/4): 187
|
29 |
Chen R L, Zheng C, Lin J, et al. Research progress and prospect of Gemini quaternary ammonium salt surfactants with ester group [J]. Chem. Ind. Eng. Prog., 2013, 32: 2707
|
|
陈瑞兰, 郑成, 林璟等. 酯基Gemini季铵盐阳离子表面活性剂的研究进展 [J]. 化工进展, 2013, 32: 2707
|
30 |
Liu H W, Gu T Y, Lv Y L, et al. Corrosion inhibition and anti-bacterial efficacy of benzalkonium chloride in artificial CO2-saturated oilfield produced water [J]. Corros. Sci., 2017, 117: 24
|
31 |
Etim I I N, Dong J H, Wei J, et al. Effect of organic silicon quaternary ammonium salts on mitigating corrosion of reinforced steel induced by SRB in mild alkaline simulated concrete pore solution [J]. J. Mater. Sci. Technol., 2019, 64: 126
|
32 |
Zhang Y J, Zhao X L. Research progress in the biocidal performance and mechanism of quaternary ammonium salt biocide [J]. Fine Chem., 2010, 27: 1145
|
|
张跃军, 赵晓蕾. 季铵盐杀生剂杀生性能与机理研究进展 [J]. 精细化工, 2010, 27: 1145
|
33 |
Węgrzyńska J, Chlebicki J, Maliszewska I. Preparation, surface-active properties and antimicrobial activities of bis (ester quaternary ammonium) salts [J]. J. Surfactants Deterg., 2007, 10: 109
|
34 |
Caillier L, de Givenchy E T, Levy R, et al. Polymerizable semi-fluorinated gemini surfactants designed for antimicrobial materials [J]. J. Colloid Interface Sci., 2009, 332: 201
|
35 |
Tan H, Xiao H N. Synthesis and antimicrobial characterization of novel 1-lysine gemini surfactants pended with reactive groups [J]. Tetrahedron Lett., 2008, 49: 1759
|
36 |
Chu Y G, Zhang H, Fang Y X, et al. Synthesis, corrosion inhibition and antibacterial performance of biimidazoline quaternary ammonium salt [J]. Spec. Petrochem., 2020, 37(4): 24
|
|
楚雨格, 张涵, 方雨欣等. 双咪唑啉季铵盐的合成及缓蚀抑菌性能研究 [J]. 精细石油化工, 2020, 37(4): 24
|
37 |
Makvandi P, Jamaledin R, Jabbari M, et al. Antibacterial quaternary ammonium compounds in dental materials: A systematic review [J]. Dent. Mater., 2018, 34: 851
|
38 |
Beyth N, Yudovin-Farber I, Bahir R, et al. Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans [J]. Biomaterials, 2006, 27: 3995
|
39 |
Beyth N, Pilo R, Weiss E I. Antibacterial activity of dental cements containing quaternary ammonium polyethylenimine nanoparticles [J]. J. Nanomater., 2012, 2012: 814763
|
40 |
Zhang Y J, Zhang D H, Qin C Y, et al. Physical and mechanical properties of dental nanocomposites composed of aliphatic epoxy resin and epoxidized aromatic hyperbranched polymers [J]. Polym. Compos., 2009, 30: 176
|
41 |
Yudovin-Farber I, Beyth N, Weiss E I, et al. Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles [J]. J. Nanopart. Res., 2010, 12: 591
|
42 |
Makvandi P, Ghaemy M, Ghadiri A A, et al. Photocurable, antimicrobial quaternary ammonium-modified nanosilica [J]. J. Dent. Res., 2015, 94: 1401
|
43 |
Gong S Q, Niu L N, Kemp L K, et al. Quaternary ammonium silane-functionalized, methacrylate resin composition with antimicrobial activities and self-repair potential [J]. Acta Biomater., 2012, 8: 3270
|
44 |
Zhang L, Yao G Y, Teng H K. Progress of guanidine compounds bactericide in water treatment [J]. Guangdong Chem. Ind., 2013, 40(15): 95
|
|
张磊, 姚光源, 滕厚开. 工业水处理用有机胍杀菌剂研究进展 [J]. 广东化工, 2013, 40(15): 95
|
45 |
Yang T Q, Liu X, Du R R. Research progress of guanidine bactericides in the oilfield water injection [J]. Guangdong Chem. Ind., 2015, 42(19): 79
|
|
杨添麒, 刘祥, 杜荣荣等. 油田注水用胍类杀菌剂研究进展 [J]. 广东化工, 2015, 42(19): 79
|
46 |
Gorbunova M, Lemkina L. New biocide guanidine-containing nanocomposites [J]. J. Nanopart. Res., 2014, 16: 2566
|
47 |
Protasov A, Bardeau J F, Morozovskaya I, et al. New promising antifouling agent based on polymeric biocide polyhexamethylene guanidine molybdate [J]. Environ. Toxicol. Chem., 2017, 36: 2543
|
48 |
Zhang L, Liu X L, Yao G Y, et al. Synthesis and spot evaluation of a kind of efficient biocide used for industrial water treatment [J]. Ind. Water Treat., 2014, 34(3): 54
|
|
张磊, 刘晓琳, 姚光源等. 一种工业水处理用高效杀生剂的合成及现场评价 [J]. 工业水处理, 2014, 34(3): 54
|
49 |
Yao G Y, Zhang L, Zhang D Y, et al. Study on synthesis and bactericidal properties of a heterocydic organic sulfuric fungicide [J]. Chem. Ind. Times, 2009, 23(11): 28
|
|
姚光源, 张磊, 张迪彦等. 一种杂环有机硫杀菌剂的合成及其杀菌性能研究 [J]. 化工时刊, 2009, 23(11): 28
|
50 |
Li N, Li M, Wu X M. Research and development of heterocyclic fungicides [A]. Proceedings of the 7th Chinese Symposium on Chemical Control of Plant Diseases [C]. Haikou, 2010: 9
|
|
李凝, 李明, 吴小毛. 杂环杀菌剂的研究进展 [A]. 中国植物病理学会化学防治专业委员会第七届中国植物病害化学防治学术研讨会论文集 [C]. 海口, 2010: 9
|
51 |
Hu Y Y, Xu H Q, Yao J, et al. Selective detection of 20 triazoles residues in food uusing molecularly imprinted solid phase extraction coupled with liquid chromatography tandem mass spectrometry [J]. Chin. J. Anal. Chem., 2014, 42: 227
|
|
胡艳云, 徐慧群, 姚剑等. 分子印迹固相萃取-液相色谱-质谱法测定果蔬中20种三唑类农药残留 [J]. 分析化学, 2014, 42: 227
|
52 |
Li Z Y, Li Z J, Gu L L, et al. Preparation and application of triazolone molecularly imprinted nano-spheres [J]. Chem. Ind. Eng. Prog., 2020, 39: 2706
|
|
李子怡, 李志君, 顾丽莉等. 三唑酮分子印迹纳米球的制备及应用 [J]. 化工进展, 2020, 39: 2706
|
53 |
Wang J L, Hou B S, Xiang J, et al. The performance and mechanism of bifunctional biocide sodium pyrithione against sulfate reducing bacteria in X80 carbon steel corrosion [J]. Corros. Sci., 2019, 150: 296
|
54 |
Sun C X, Xu H W, Chen Y M, et al. Research on bactericidal agent of heterotrophic bacteria in cooling water by composite of isothiazolinones and sodium hypochorite [J]. Clean. World, 2013, 29(10): 14
|
|
孙彩霞, 徐会武, 陈燕敏等. 异噻唑啉酮和NaClO复合杀菌剂性能研究 [J]. 清洗世界, 2013, 29(10): 14
|
55 |
Wu J Y, Chai K. Efficient and environmentally-friendly antibacterial and mildewproof inorganic composite nano-powder slurry and its preparation method [P]. Chin Pat, 201110401227.3, 2011
|
|
吴进怡, 柴柯. 一种高效环保抗菌防霉无机复合纳米粉浆及其制备方法 [P]. 中国专利, 201110401227.3, 2011)
|
56 |
Qu Q, Wang L, Li L, et al. Effect of the fungus, Aspergillus niger, on the corrosion behaviour of AZ31B magnesium alloy in artificial seawater [J]. Corros. Sci., 2015, 98: 249
|
57 |
Wang J L, Xiong F P, Liu H W, et al. Study of the corrosion behavior of Aspergillus niger on 7075-T6 aluminum alloy in a high salinity environment [J]. Bioelectrochemistry, 2019, 129: 10
|
58 |
Block S S. Humidity requirements for mold growth [J]. Appl. Microbiol., 1953, 1: 287
|
59 |
Gorur R S, Montesinos J, Roberson R, et al. Mold growth on nonceramic insulators and its impact on electrical performance [J]. IEEE Trans. Power Deliv., 2003, 18: 559
|
60 |
Juzeliūnas E, Ramanauskas R, Lugauskas A, et al. Microbially influenced corrosion acceleration and inhibition. EIS study of Zn and Al subjected for two years to influence of Penicillium frequentans, Aspergillus niger and Bacillus mycoides [J]. Electrochem. Commun., 2005, 7: 305
|
61 |
Nielsen K F, Mogensen J M, Johansen M, et al. Review of secondary metabolites and mycotoxins from the Aspergillus niger group [J]. Anal. Bioanal. Chem., 2009, 395: 1225
|
62 |
Zhang T S, Wang J L, Zhang G A, et al. The corrosion promoting mechanism of Aspergillus niger on 5083 aluminum alloy and inhibition performance of miconazole nitrate [J]. Corros. Sci., 2020, 176: 108930
|
63 |
Saravolatz L D, Johnson L B, Kauffman C A. Voriconazole: A new triazole antifungal agent [J]. Clin. Infect. Dis., 2003, 36: 630
|
64 |
Nagappan V, Deresinski S. Reviews of anti-infective agents: Posaconazole: a broad-spectrum triazole antifungal agent [J]. Clin. Infect. Dis., 2007, 45: 1610
|
65 |
Liu H W, Sharma M, Wang J L, et al. Microbiologically influenced corrosion of 316L stainless steel in the presence of Chlorella vulgaris [J]. Int. Biodeterior. Biodegrad., 2018, 129: 209
|
66 |
Wang J L, Zhang T S, Zhang X X, et al. Inhibition effects of benzalkonium chloride on Chlorella vulgaris induced corrosion of carbon steel [J]. J. Mater. Sci. Technol., 2020, 43: 14
|
67 |
Zhao L, Hong A H, Qi Y Z, et al. Exploration of the algaecide zeolite carrying copper [J]. China Environ. Sci., 2002, 22(3): 207
|
|
赵玲, 洪爱华, 齐雨藻等. 沸石载铜除藻剂的探讨 [J]. 中国环境科学, 2002, 22(3): 207
|
68 |
Li D, Zhang H J, Fu L J, et al. A novel algicide: Evidence of the effect of a fatty acid compound from the marine bacterium, Vibrio sp. BS02 on the harmful dinoflagellate, Alexandrium tamarense [J]. PLoS One, 2014, 9: e91201
|
69 |
Papke U, Gross E M, Isolation Francke W., identification and determination of the absolute configuration of Fischerellin B. A new algicide from the freshwater cyanobacterium Fischerella muscicola (Thuret) [J]. Tetrahedron Lett., 1997, 38: 379
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|