Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (6): 757-764    DOI: 10.11902/1005.4537.2020.152
Current Issue | Archive | Adv Search |
Effect of Culture Medium on Microbiologically Influenced Corrosion
LV Meiying, LI Zhenxin, DU Min(), WAN Zixuan
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
Download:  HTML  PDF(661KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of culture medium on the growth characteristics of microorganisms and their behavior in the relevant corrosion process of materials at home and abroad was introduced in detail. First, the different types of culture media were classified. The common sources and physiological functions of the main nutrient elements were summarized. The culture media for common corrosive bacteria were also briefly described. Then, the effect of different nutrient components (such as carbon source, nitrogen source and inorganic salt components, e.g., PO43-, SO42-, Cl-, Na+, K+, Ca2+ and Fe2+) on the growth characteristics and corrosion process of bacteria was emphatically discussed. It is finally prospected that the importance of compositional optimization of culture media for the clarification of the relevant mechanism of bacteria influenced corrosion.

Key words:  microbiologically influenced corrosion      culture medium      carbon source      nitrogen source      inorganic salt      growth characteristic     
Received:  18 August 2020     
ZTFLH:  Q939.98  
Fund: National Natural Science Foundation of China(51871204)
Corresponding Authors:  DU Min     E-mail:  ssdm99@ouc.edu.cn
About author:  DU Min, E-mail: ssdm99@ouc.edu.cn

Cite this article: 

LV Meiying, LI Zhenxin, DU Min, WAN Zixuan. Effect of Culture Medium on Microbiologically Influenced Corrosion. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 757-764.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.152     OR     https://www.jcscp.org/EN/Y2021/V41/I6/757

Nutrient elementCommon sourcePhysiological function
CGlucose, sucrose, starch, beef extract, etc.It constitutes the cellular material of microorganisms, the skeleton of organic macromolecules, and provides energy for life activities
NYeast extract, beef extract, peptone, urea, ammonium salt, etc.It is the main element that constitutes proteins, nucleic acids, etc. In addition, ammonium and nitrate can also be used as energy sources for some bacteria
PKH2PO4, K2HPO4It is the key component of nucleic acid, nuclear protein and many coenzymes; Moreover, phosphate is an important buffer in cells
S(NH4)2SO4, MgSO4It is the component of sulfur-containing amino acids (cystine, cysteine, methionine, etc.) and sulfur-containing vitamins (biotin, thiamine, etc.); Sulfur and sulfides are also sources of energy for some autotrophic microorganisms
KKH2PO4, K2HPO4It is the cofactor of some enzymes (fructokinase, phosphopyruvate transphosphatase, etc.); It is also involved in the composition of the intracellular material transport system, and regulates membrane permeability, potential difference, and osmotic pressure
NaNaCl, NaNO3It can maintain osmotic pressure; It is essential for some bacteria and cyanobacteria
CaCa(NO3)2, CaCl2It is the stabilizer of some extracellular enzymes and the cofactor of proteases; It can also regulate the colloidal state in cells and reduce the permeability of the cell membrane
MgMgSO4It is the cofactor of nitrogenase and the component of chlorophyll; It can also stabilize ribosomes and cytoplasmic membranes
FeFeSO4It can constitute cytochrome, chlorophyll and some enzymes involved in the electron transfer process
Table 1  Source and function of main nutrients
Culture mediumKH2PO4K2HPO4NH4ClCaCl2·2H2OCaCl2·6H2OCaSO4Na2SO4FeSO4·7H2OMgSO4·7H2OSodium lactateYeast extractSodium citrate(NH4)2FeSO4·6H2O
PB0.5---1.00.06------4.50.0040.066.01.00.3---
PC---0.51.0---0.06---2.0---0.066.01.00.3---
MB---0.051.0------1.0------4.13.51.05.01.38
Table 2  Culture medium composition for SRB (g·L-1)
Culture mediumK2HPO4NaNO3CaCl2MgSO4·7H2ONH4NO3(g/L)(NH4)2SO4FeSO4·7H2OAmmonium ferric citrateKClCa(NO3)2
Winogradsky0.50.50.20.50.5------6.0------
9k0.05------0.50.15---------0.050.01
Bushnell Hass0.5------0.5---3.044.22---0.10.01
Table 3  Culture medium composition for IOB (g·L-1)
Culture mediumBeef extractYeast extractNaClPeptoneKNO3
NB3.0---5.010.0---
LB-NO3---5.05.010.010.0
Table 4  Culture medium composition for NRB (g·L-1)
1 Lv M Y, Du M. A review: Microbiologically influenced corrosion and the effect of cathodic polarization on typical bacteria [J]. Rev. Environ. Sci. Biotechnol., 2018, 17: 431
2 Lv M Y, Du M, Li X, et al. Mechanism of microbiologically influenced corrosion of X65 steel in seawater containing sulfate-reducing bacteria and iron-oxidizing bacteria [J]. J. Mater. Res. Technol., 2019, 8: 4066
3 Liu H W, Liu H F. Research progress of corrosion of steels induced by iron oxidizing bacteria [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 195
刘宏伟, 刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 195
4 Wang Y, Wu J J, Zhang D. Research progress on corrosion of metal materials caused by dissimilatory iron-reducing bacteria in seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 389
王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2020, 40: 389
5 Li H B, Xu D K, Li Y C, et al. Extracellular electron transfer is a bottleneck in the microbiologically influenced corrosion of C1018 carbon steel by the biofilm of sulfate-reducing bacterium Desulfovibrio vulgaris [J]. PLoS One, 2015, 10: e0136183
6 Dec W, Mosiałek M, Socha R P, et al. The effect of sulphate-reducing bacteria biofilm on passivity and development of pitting on 2205 duplex stainless steel [J]. Electrochim. Acta, 2016, 212: 225
7 Duan J Z, Wu S, Zhang X J, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater [J]. Electrochim. Acta, 2008, 54: 22
8 Yuan S J, Liang B, Zhao Y, et al. Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria [J]. Corros. Sci., 2013, 74: 353
9 Starosvetsky D, Armon R, Yahalom J, et al. Pitting corrosion of carbon steel caused by iron bacteria [J]. Int. Biodeterior. Biodegrad., 2001, 47: 79
10 Wang H, Ju L K, Castaneda H, et al. Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans [J]. Corros. Sci., 2014, 89: 250
11 Ashassi-Sorkhabi H, Moradi-Haghighi M, Zarrini G, et al. Corrosion behavior of carbon steel in the presence of two novel iron-oxidizing bacteria isolated from sewage treatment plants [J]. Biodegradation, 2012, 23: 69
12 Halim A, Watkin E, Gubner R. Short term corrosion monitoring of carbon steel by bio-competitive exclusion of thermophilic sulphate reducing bacteria and nitrate reducing bacteria [J]. Electrochim. Acta, 2012, 77: 348
13 Pu Y N, Dou W W, Gu T Y, et al. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2020, 47: 10
14 Sachan R, Singh A K. Comparison of microbial influenced corrosion in presence of iron oxidizing bacteria (strains DASEWM1 and DASEWM2) [J]. Constr. Build. Mater., 2020, 256: 119438
15 Nan L, Xu D K, Gu T Y, et al. Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli [J]. Mater. Sci. Eng., 2015, 48C: 228
16 Pillay C, Lin J. The impact of additional nitrates in mild steel corrosion in a seawater/sediment system [J]. Corros. Sci., 2014, 80: 416
17 Tian X, Liao Q, Dang N, et al. Effect of nutrient and hydrodynamic conditions on growth characteristics of photosynthetic bacterial biofilm [J]. China Biotechnol., 2009, 29(4): 67
田鑫, 廖强, 党楠等. 营养及水力条件影响光合细菌生物膜生长特性实验 [J]. 中国生物工程杂志, 2009, 29(4): 67
18 Chai K, Luo Q, Wu J. Effect of Pseudomonas on electrochemical corrosion behavior of S45C steel in seawater and a culture medium [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 481
柴柯, 罗琦, 吴进怡. 海水及培养基中假单胞菌对45钢电化学腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2013, 33: 481
19 Zhou D Q. Microbiology Course [M]. 3rd ed. Beijing: Higher Education Press, 2011
周德庆. 微生物学教程 [M]. 3版. 北京: 高等教育出版社, 2011
20 Yi W J, Qu D, Zhu C, et al. Fe(Ⅲ) reduction characteristics of three iron reducers using different carbon sources [J]. J. Northwest A&F Univ. (Nat. Sci. Ed.), 2009, 37(2): 181
易维洁, 曲东, 朱超等. 3株铁还原细菌利用不同碳源的还原特征分析 [J]. 西北农林科技大学学报 (自然科学版), 2009, 37(2): 181
21 Tong L, Li X L, Wu J N, et al. Isolation of an iron-reducing bacteria strain and its carbon source utilization [J]. J. Hefei Univ. Technol., 2016, 39: 536
童磊, 李湘凌, 吴纪南等. 一株铁还原菌的分离及其碳源利用特性研究 [J]. 合肥工业大学学报 (自然科学版), 2016, 39: 536
22 Zhang P Y, Xu D K, Li Y C, et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm [J]. Bioelectrochemistry, 2015, 101: 14
23 Xu D K, Gu T Y. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm [J]. Int. Biodeterior. Biodegrad., 2014, 91: 74
24 Jia R, Yang D Q, Xu J, et al. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation [J]. Corros. Sci., 2017, 127: 1
25 Zhang Y, Zhang C Z, Gou J X, et al. Study of the effects of culture condition on the growth of Thiobacillus ferroxidans and the jarosite precipitates [J]. J. Saf. Environ., 2012, 12: 28
张英, 张承中, 苟菊香等. 营养条件对氧化亚铁硫杆菌生长及其铁沉淀的影响研究 [J]. 安全与环境学报, 2012, 12(2): 28
26 Zhang X, Wang S L, Ding Y, et al. Effect of nutrients on growth and desulphurization with thiobacillus ferrooxidans [J]. J. China Univ. Min. Technol., 2005, 34: 725
张兴, 王少丽, 丁玉等. 营养条件对氧化亚铁硫杆菌生长和脱硫的影响 [J]. 中国矿业大学学报, 2005, 34: 725
27 Gu F Y. The study on nitrogen source of sulfate reducing bacteria culture medium and the treatment conditions of acid mine drainage [D]. Changchun: Jilin University, 2017
顾风云. SRB培养基氮源及其处理酸性矿山废水条件研究 [D]. 长春: 吉林大学, 2017
28 Madigan M T, Martinko J M, Dunlap P V, et al. Brock Biology of Microorganisms[M]. 12th ed. New Jersey: Prentice-Hall, 2008
29 Van Der Kooij D, Visser A, Hijnen W A M. Determining the concentration of easily assimilable organic carbon in drinking water [J]. J. Am. Water Works Ass., 1982, 74: 540
30 Lehtola M J, Miettinen I T, Martikainen P J. Biofilm formation in drinking water affected by low concentrations of phosphorus [J]. Can. J. Microbiol., 2002, 48: 494
31 Sathasivan A, Ohgaki S, Yamamoto K, et al. Role of inorganic phosphorus in controlling regrowth in water distribution system [J]. Water Sci. Technol., 1997, 35: 37
32 Rompré A, Prévost M, Coallier J, et al. Impacts of implementing a corrosion control strategy on biofilm growth [J]. Water Sci. Technol., 2000, 41: 287
33 Jiang D L, Zhang X J. Limitation of phosphorus to microbial growth in drinking water [J]. China Water Wastewater, 2004, 20(1): 26
姜登岭, 张晓健. 饮用水中磷对微生物生长的限制作用 [J]. 中国给水排水, 2004, 20(1): 26
34 Meng Z J, Wu W L, Qi J H, et al. Analysis of the influence of wellbore environmental factors to SRB growth and corrosion [J]. Petrochem. Ind. Appl., 2015, 34(1): 13
孟章进, 吴伟林, 祁建杭等. 井筒环境因素对SRB生长及腐蚀影响分析 [J]. 石油化工应用, 2015, 34(1): 13
35 Lyu M Y, Li Z X, Du M, et al. Formation, function and evolution of biofilm in microbiologically influenced corrosion [J]. Surf. Technol., 2019, 48(11): 59
吕美英, 李振欣, 杜敏等. 微生物腐蚀中生物膜的生成、作用与演变 [J]. 表面技术, 2019, 48(11): 59
36 Fang S J, Liu Y H, Wang Q, et al. Influence of SRB on corrosion of AZ91 magnesium alloy in solution containing chlorine ions [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2008, 36(7): 92
方世杰, 刘耀辉, 王强等. SRB对AZ91镁合金在含氯离子溶液中腐蚀的影响 [J]. 华南理工大学学报 (自然科学版), 2008, 36(7): 92
37 Zhang X L, Chen Z X, Liu H H, et al. Effect of environment factors on the growth of sulfate-reducing bacteria [J]. J. Chin. Soc. Corros. Prot., 2000, 20: 224
张小里, 陈志昕, 刘海洪等. 环境因素对硫酸盐还原菌生长的影响 [J]. 中国腐蚀与防护学报, 2000, 20: 224
38 Webster B J, Newman R C. Producing Rapid Sulfate-Reducing Bacteria (SRB)-Influenced Corrosion in the Laboratory [M]. West Conshohocken: ASTM International, 1994
39 Xu C M, Zhang Y H, Cheng G X, et al. Pitting corrosion behavior of 316L stainless steel in the media of sulphate-reducing and iron-oxidizing bacteria [J]. Mater. Charact., 2008, 59: 245
40 Yang W L. The interaction between amino acids, salts ions and biological membrane revealed by sum frequency generation [D]. Hefei: University of Science and Technology of China, 2015
杨未来. 氨基酸和盐离子与生物膜作用的和频光谱研究 [D]. 合肥: 中国科学技术大学, 2015
41 López-Moreno A, Sepúlveda-Sánchez J D, Guzman E M M A, et al. Calcium carbonate precipitation by heterotrophic bacteria isolated from biofilms formed on deteriorated ignimbrite stones: Influence of calcium on EPS production and biofilm formation by these isolates [J]. Biofouling, 2014, 30: 547
42 De Kerchove A J, Elimelech M. Calcium and magnesium cations enhance the adhesion of motile and nonmotile Pseudomonas aeruginosa on alginate films [J]. Langmuir, 2008, 24: 3392
43 Geesey G G, Wigglesworth-Cooksey B, Cooksey K E. Influence of calcium and other cations on surface adhesion of bacteria and diatoms: A review [J]. Biofouling, 2000, 15: 195
44 Liu H F, Wang M F, Xu L M, et al. The role of Ca2+ on the microbiologically induced corrosion of carbon steel [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 45
刘宏芳, 汪梅芳, 许立铭等. 钙离子对碳钢微生物腐蚀的影响 [J]. 中国腐蚀与防护学报, 2004, 24: 45
45 Zhang X L, Liu H H, Chen K X, et al. The study of growing regulation of sulfate-reducing bacteria [J]. J. Northwest Univ. (Nat. Sci. Ed.), 1999, 29: 397
张小里, 刘海洪, 陈开勋等. 硫酸盐还原菌生长规律的研究 [J]. 西北大学学报 (自然科学版), 1999, 29: 397
46 Jia R, Wang D, Jin P, et al. Effects of ferrous ion concentration on microbiologically influenced corrosion of carbon steel by sulfate reducing bacterium Desulfovibrio vulgaris [J]. Corros. Sci., 2019, 153: 127
47 Javed M A, Stoddart P R, Wade S A. Corrosion of carbon steel by sulphate reducing bacteria: Initial attachment and the role of ferrous ions [J]. Corros. Sci., 2015, 93: 48
48 Wan X S, Wan H Q, Zhu J H. Selection and Study of the Growth Characterization of the Sulfate-Reducing Bacteria [J]. Chongqing Environ. Sci., 2003, 25(3): 26
万雪松, 万海清, 朱家骅. 硫酸厂淤泥中SRB的选育及特性研究 [J]. 重庆环境科学, 2003, 25(3): 26
49 Liu H W, Gu T Y, Asif M, et al. The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria [J]. Corros. Sci., 2017, 114: 102
50 Starosvetsky J, Starosvetsky D, Pokroy B, et al. Electrochemical behaviour of stainless steels in media containing iron-oxidizing bacteria (IOB) by corrosion process modeling [J]. Corros. Sci., 2008, 50: 540
51 Finkenstadt V L, Côté G L, Willett J L. Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides [J]. Biotechnol. Lett., 2011, 33: 1093
52 Wu Q, Li Y, Li Y N, et al. Influence of iron-oxidizing bacteria in reclaimed water used for recycle cooling water on corrosion behavior of carbon steel [J]. J. Tianjin Polytechnic Univ., 2014, 33(4): 40
吴卿, 李云, 李亚男等. 再生水用于循环冷却水中铁细菌对碳钢腐蚀的影响 [J]. 天津工业大学学报, 2014, 33(4): 40
[1] HE Yongjun, ZHANG Tiansui, WANG Haitao, ZHANG Fei, LI Guangfang, LIU Hongfang. Research Progress of Biocides for Microbiologically Influenced Corrosion[J]. 中国腐蚀与防护学报, 2021, 41(6): 748-756.
[2] ZHANG Fei, WANG Haitao, HE Yongjun, ZHANG Tiansui, LIU Hongfang. Case Analysis of Microbial Corrosion in Product Oil Pipeline[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[3] LI Guangquan, LI Guangfang, WANG Junqiang, ZHANG Tiansui, ZHANG Fei, JIANG Ximin, LIU Hongfang. Microbiologically Influenced Corrosion Mechanism and Protection of Offshore Pipelines[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
[4] MA Gang, GU Yanhong, ZHAO Jie. Research Progress on Sulfate-reducing Bacteria Induced Corrosion of Steels[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[5] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[6] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[7] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[8] WANG Yu, WU Jiajia, ZHANG Dun. Research Progress on Corrosion of Metal Materials Caused by Dissimilatory Iron-reducing Bacteria in Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[9] XU Congmin,LUO Lihui,WANG Wenyuan,ZHAO Miaomiao,TIAN Yongqiang,SONG Pengdi. Enhancing Sterilization Effect of Bactericide by D-tyrosine to Iron Bacterial Biofilm on Carbon Steel Surface[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[10] Xianbo SHI,Chunguang YANG,Wei YAN,Dake XU,Maocheng YAN,Yiyin SHAN,Ke YANG. Microbiologically Influenced Corrosion of Pipeline Steels[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[11] Juna CHEN,Jiajia WU,Peng WANG,Dun ZHANG. Effect of Desulfovibrio sp. and Vibrio Alginolyticus on Corrosion Behavior of 907 Steel in Seawater[J]. 中国腐蚀与防护学报, 2017, 37(5): 402-410.
[12] Hongwei LIU,Hongfang LIU. Research Progress of Corrosion of Steels Induced by Iron Oxidizing Bacteria[J]. 中国腐蚀与防护学报, 2017, 37(3): 195-206.
[13] DU Xiangqian,DUAN Jizhou,ZHAI Xiaofan,LUAN Xin,ZHANG Jie,HOU Baorong. Corrosion Behavior of 316L Stainless Steel Influenced by Iron-reducing Bacteria Shewanella Algae Biofilms[J]. 中国腐蚀与防护学报, 2013, 33(5): 363-370.
[14] DUAN Dongxia, CHEN Xiguang, LIN Cunguo. 907A STEEL CORROSION IN ARTIFICIAL SULFATE REDUING BACTERIA BIOFILM[J]. 中国腐蚀与防护学报, 2011, 31(6): 453-456.
[15] XIAO Weilong, CHAI Ke, YANG Yuhui, WU Jinyi. EFFECT OF MICROBE ON THE CORROSION BEHAVIORS AND MECHANICAL PROPERTIES OF 25 CARBON STEEL IN TROPICAL SEAWATER CONDITION[J]. 中国腐蚀与防护学报, 2010, 30(5): 359-363.
No Suggested Reading articles found!