|
|
Effect of Culture Medium on Microbiologically Influenced Corrosion |
LV Meiying, LI Zhenxin, DU Min( ), WAN Zixuan |
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China |
|
|
Abstract The influence of culture medium on the growth characteristics of microorganisms and their behavior in the relevant corrosion process of materials at home and abroad was introduced in detail. First, the different types of culture media were classified. The common sources and physiological functions of the main nutrient elements were summarized. The culture media for common corrosive bacteria were also briefly described. Then, the effect of different nutrient components (such as carbon source, nitrogen source and inorganic salt components, e.g., PO43-, SO42-, Cl-, Na+, K+, Ca2+ and Fe2+) on the growth characteristics and corrosion process of bacteria was emphatically discussed. It is finally prospected that the importance of compositional optimization of culture media for the clarification of the relevant mechanism of bacteria influenced corrosion.
|
Received: 18 August 2020
|
|
Fund: National Natural Science Foundation of China(51871204) |
Corresponding Authors:
DU Min
E-mail: ssdm99@ouc.edu.cn
|
About author: DU Min, E-mail: ssdm99@ouc.edu.cn
|
1 |
Lv M Y, Du M. A review: Microbiologically influenced corrosion and the effect of cathodic polarization on typical bacteria [J]. Rev. Environ. Sci. Biotechnol., 2018, 17: 431
|
2 |
Lv M Y, Du M, Li X, et al. Mechanism of microbiologically influenced corrosion of X65 steel in seawater containing sulfate-reducing bacteria and iron-oxidizing bacteria [J]. J. Mater. Res. Technol., 2019, 8: 4066
|
3 |
Liu H W, Liu H F. Research progress of corrosion of steels induced by iron oxidizing bacteria [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 195
|
|
刘宏伟, 刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 195
|
4 |
Wang Y, Wu J J, Zhang D. Research progress on corrosion of metal materials caused by dissimilatory iron-reducing bacteria in seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 389
|
|
王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2020, 40: 389
|
5 |
Li H B, Xu D K, Li Y C, et al. Extracellular electron transfer is a bottleneck in the microbiologically influenced corrosion of C1018 carbon steel by the biofilm of sulfate-reducing bacterium Desulfovibrio vulgaris [J]. PLoS One, 2015, 10: e0136183
|
6 |
Dec W, Mosiałek M, Socha R P, et al. The effect of sulphate-reducing bacteria biofilm on passivity and development of pitting on 2205 duplex stainless steel [J]. Electrochim. Acta, 2016, 212: 225
|
7 |
Duan J Z, Wu S, Zhang X J, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater [J]. Electrochim. Acta, 2008, 54: 22
|
8 |
Yuan S J, Liang B, Zhao Y, et al. Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria [J]. Corros. Sci., 2013, 74: 353
|
9 |
Starosvetsky D, Armon R, Yahalom J, et al. Pitting corrosion of carbon steel caused by iron bacteria [J]. Int. Biodeterior. Biodegrad., 2001, 47: 79
|
10 |
Wang H, Ju L K, Castaneda H, et al. Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans [J]. Corros. Sci., 2014, 89: 250
|
11 |
Ashassi-Sorkhabi H, Moradi-Haghighi M, Zarrini G, et al. Corrosion behavior of carbon steel in the presence of two novel iron-oxidizing bacteria isolated from sewage treatment plants [J]. Biodegradation, 2012, 23: 69
|
12 |
Halim A, Watkin E, Gubner R. Short term corrosion monitoring of carbon steel by bio-competitive exclusion of thermophilic sulphate reducing bacteria and nitrate reducing bacteria [J]. Electrochim. Acta, 2012, 77: 348
|
13 |
Pu Y N, Dou W W, Gu T Y, et al. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2020, 47: 10
|
14 |
Sachan R, Singh A K. Comparison of microbial influenced corrosion in presence of iron oxidizing bacteria (strains DASEWM1 and DASEWM2) [J]. Constr. Build. Mater., 2020, 256: 119438
|
15 |
Nan L, Xu D K, Gu T Y, et al. Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli [J]. Mater. Sci. Eng., 2015, 48C: 228
|
16 |
Pillay C, Lin J. The impact of additional nitrates in mild steel corrosion in a seawater/sediment system [J]. Corros. Sci., 2014, 80: 416
|
17 |
Tian X, Liao Q, Dang N, et al. Effect of nutrient and hydrodynamic conditions on growth characteristics of photosynthetic bacterial biofilm [J]. China Biotechnol., 2009, 29(4): 67
|
|
田鑫, 廖强, 党楠等. 营养及水力条件影响光合细菌生物膜生长特性实验 [J]. 中国生物工程杂志, 2009, 29(4): 67
|
18 |
Chai K, Luo Q, Wu J. Effect of Pseudomonas on electrochemical corrosion behavior of S45C steel in seawater and a culture medium [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 481
|
|
柴柯, 罗琦, 吴进怡. 海水及培养基中假单胞菌对45钢电化学腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2013, 33: 481
|
19 |
Zhou D Q. Microbiology Course [M]. 3rd ed. Beijing: Higher Education Press, 2011
|
|
周德庆. 微生物学教程 [M]. 3版. 北京: 高等教育出版社, 2011
|
20 |
Yi W J, Qu D, Zhu C, et al. Fe(Ⅲ) reduction characteristics of three iron reducers using different carbon sources [J]. J. Northwest A&F Univ. (Nat. Sci. Ed.), 2009, 37(2): 181
|
|
易维洁, 曲东, 朱超等. 3株铁还原细菌利用不同碳源的还原特征分析 [J]. 西北农林科技大学学报 (自然科学版), 2009, 37(2): 181
|
21 |
Tong L, Li X L, Wu J N, et al. Isolation of an iron-reducing bacteria strain and its carbon source utilization [J]. J. Hefei Univ. Technol., 2016, 39: 536
|
|
童磊, 李湘凌, 吴纪南等. 一株铁还原菌的分离及其碳源利用特性研究 [J]. 合肥工业大学学报 (自然科学版), 2016, 39: 536
|
22 |
Zhang P Y, Xu D K, Li Y C, et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm [J]. Bioelectrochemistry, 2015, 101: 14
|
23 |
Xu D K, Gu T Y. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm [J]. Int. Biodeterior. Biodegrad., 2014, 91: 74
|
24 |
Jia R, Yang D Q, Xu J, et al. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation [J]. Corros. Sci., 2017, 127: 1
|
25 |
Zhang Y, Zhang C Z, Gou J X, et al. Study of the effects of culture condition on the growth of Thiobacillus ferroxidans and the jarosite precipitates [J]. J. Saf. Environ., 2012, 12: 28
|
|
张英, 张承中, 苟菊香等. 营养条件对氧化亚铁硫杆菌生长及其铁沉淀的影响研究 [J]. 安全与环境学报, 2012, 12(2): 28
|
26 |
Zhang X, Wang S L, Ding Y, et al. Effect of nutrients on growth and desulphurization with thiobacillus ferrooxidans [J]. J. China Univ. Min. Technol., 2005, 34: 725
|
|
张兴, 王少丽, 丁玉等. 营养条件对氧化亚铁硫杆菌生长和脱硫的影响 [J]. 中国矿业大学学报, 2005, 34: 725
|
27 |
Gu F Y. The study on nitrogen source of sulfate reducing bacteria culture medium and the treatment conditions of acid mine drainage [D]. Changchun: Jilin University, 2017
|
|
顾风云. SRB培养基氮源及其处理酸性矿山废水条件研究 [D]. 长春: 吉林大学, 2017
|
28 |
Madigan M T, Martinko J M, Dunlap P V, et al. Brock Biology of Microorganisms[M]. 12th ed. New Jersey: Prentice-Hall, 2008
|
29 |
Van Der Kooij D, Visser A, Hijnen W A M. Determining the concentration of easily assimilable organic carbon in drinking water [J]. J. Am. Water Works Ass., 1982, 74: 540
|
30 |
Lehtola M J, Miettinen I T, Martikainen P J. Biofilm formation in drinking water affected by low concentrations of phosphorus [J]. Can. J. Microbiol., 2002, 48: 494
|
31 |
Sathasivan A, Ohgaki S, Yamamoto K, et al. Role of inorganic phosphorus in controlling regrowth in water distribution system [J]. Water Sci. Technol., 1997, 35: 37
|
32 |
Rompré A, Prévost M, Coallier J, et al. Impacts of implementing a corrosion control strategy on biofilm growth [J]. Water Sci. Technol., 2000, 41: 287
|
33 |
Jiang D L, Zhang X J. Limitation of phosphorus to microbial growth in drinking water [J]. China Water Wastewater, 2004, 20(1): 26
|
|
姜登岭, 张晓健. 饮用水中磷对微生物生长的限制作用 [J]. 中国给水排水, 2004, 20(1): 26
|
34 |
Meng Z J, Wu W L, Qi J H, et al. Analysis of the influence of wellbore environmental factors to SRB growth and corrosion [J]. Petrochem. Ind. Appl., 2015, 34(1): 13
|
|
孟章进, 吴伟林, 祁建杭等. 井筒环境因素对SRB生长及腐蚀影响分析 [J]. 石油化工应用, 2015, 34(1): 13
|
35 |
Lyu M Y, Li Z X, Du M, et al. Formation, function and evolution of biofilm in microbiologically influenced corrosion [J]. Surf. Technol., 2019, 48(11): 59
|
|
吕美英, 李振欣, 杜敏等. 微生物腐蚀中生物膜的生成、作用与演变 [J]. 表面技术, 2019, 48(11): 59
|
36 |
Fang S J, Liu Y H, Wang Q, et al. Influence of SRB on corrosion of AZ91 magnesium alloy in solution containing chlorine ions [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2008, 36(7): 92
|
|
方世杰, 刘耀辉, 王强等. SRB对AZ91镁合金在含氯离子溶液中腐蚀的影响 [J]. 华南理工大学学报 (自然科学版), 2008, 36(7): 92
|
37 |
Zhang X L, Chen Z X, Liu H H, et al. Effect of environment factors on the growth of sulfate-reducing bacteria [J]. J. Chin. Soc. Corros. Prot., 2000, 20: 224
|
|
张小里, 陈志昕, 刘海洪等. 环境因素对硫酸盐还原菌生长的影响 [J]. 中国腐蚀与防护学报, 2000, 20: 224
|
38 |
Webster B J, Newman R C. Producing Rapid Sulfate-Reducing Bacteria (SRB)-Influenced Corrosion in the Laboratory [M]. West Conshohocken: ASTM International, 1994
|
39 |
Xu C M, Zhang Y H, Cheng G X, et al. Pitting corrosion behavior of 316L stainless steel in the media of sulphate-reducing and iron-oxidizing bacteria [J]. Mater. Charact., 2008, 59: 245
|
40 |
Yang W L. The interaction between amino acids, salts ions and biological membrane revealed by sum frequency generation [D]. Hefei: University of Science and Technology of China, 2015
|
|
杨未来. 氨基酸和盐离子与生物膜作用的和频光谱研究 [D]. 合肥: 中国科学技术大学, 2015
|
41 |
López-Moreno A, Sepúlveda-Sánchez J D, Guzman E M M A, et al. Calcium carbonate precipitation by heterotrophic bacteria isolated from biofilms formed on deteriorated ignimbrite stones: Influence of calcium on EPS production and biofilm formation by these isolates [J]. Biofouling, 2014, 30: 547
|
42 |
De Kerchove A J, Elimelech M. Calcium and magnesium cations enhance the adhesion of motile and nonmotile Pseudomonas aeruginosa on alginate films [J]. Langmuir, 2008, 24: 3392
|
43 |
Geesey G G, Wigglesworth-Cooksey B, Cooksey K E. Influence of calcium and other cations on surface adhesion of bacteria and diatoms: A review [J]. Biofouling, 2000, 15: 195
|
44 |
Liu H F, Wang M F, Xu L M, et al. The role of Ca2+ on the microbiologically induced corrosion of carbon steel [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 45
|
|
刘宏芳, 汪梅芳, 许立铭等. 钙离子对碳钢微生物腐蚀的影响 [J]. 中国腐蚀与防护学报, 2004, 24: 45
|
45 |
Zhang X L, Liu H H, Chen K X, et al. The study of growing regulation of sulfate-reducing bacteria [J]. J. Northwest Univ. (Nat. Sci. Ed.), 1999, 29: 397
|
|
张小里, 刘海洪, 陈开勋等. 硫酸盐还原菌生长规律的研究 [J]. 西北大学学报 (自然科学版), 1999, 29: 397
|
46 |
Jia R, Wang D, Jin P, et al. Effects of ferrous ion concentration on microbiologically influenced corrosion of carbon steel by sulfate reducing bacterium Desulfovibrio vulgaris [J]. Corros. Sci., 2019, 153: 127
|
47 |
Javed M A, Stoddart P R, Wade S A. Corrosion of carbon steel by sulphate reducing bacteria: Initial attachment and the role of ferrous ions [J]. Corros. Sci., 2015, 93: 48
|
48 |
Wan X S, Wan H Q, Zhu J H. Selection and Study of the Growth Characterization of the Sulfate-Reducing Bacteria [J]. Chongqing Environ. Sci., 2003, 25(3): 26
|
|
万雪松, 万海清, 朱家骅. 硫酸厂淤泥中SRB的选育及特性研究 [J]. 重庆环境科学, 2003, 25(3): 26
|
49 |
Liu H W, Gu T Y, Asif M, et al. The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria [J]. Corros. Sci., 2017, 114: 102
|
50 |
Starosvetsky J, Starosvetsky D, Pokroy B, et al. Electrochemical behaviour of stainless steels in media containing iron-oxidizing bacteria (IOB) by corrosion process modeling [J]. Corros. Sci., 2008, 50: 540
|
51 |
Finkenstadt V L, Côté G L, Willett J L. Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides [J]. Biotechnol. Lett., 2011, 33: 1093
|
52 |
Wu Q, Li Y, Li Y N, et al. Influence of iron-oxidizing bacteria in reclaimed water used for recycle cooling water on corrosion behavior of carbon steel [J]. J. Tianjin Polytechnic Univ., 2014, 33(4): 40
|
|
吴卿, 李云, 李亚男等. 再生水用于循环冷却水中铁细菌对碳钢腐蚀的影响 [J]. 天津工业大学学报, 2014, 33(4): 40
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|