Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (5): 571-578    DOI: 10.11902/1005.4537.2020.240
Current Issue | Archive | Adv Search |
Research Status and Progress on Growth Kinetics of Trivalent Chromium-based Conversion Film
WANG Laibin, LIU Xiahe(), WANG Mei, GAO Junjie
Department of Resource and Environment, Institute of Metallurgical Resources and Environmental Engineering, School of Metallurgy, Northeastern University, Shenyang 110819, China
Download:  HTML  PDF(1109KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The trivalent Cr-based conversion (TCC) film on metal and alloy has low toxicity, but unexpectedly poor stability and easy to crack. How to form a high-quality TCC film becomes the key issue for acquiring such films with comprehensive performance both in good corrosion resistance and stability. By investigating the relevant worldwide research of TCC film growth, the corresponding properties, like electrochemical performance, microstructure, phase constituents etc. of the film are reviewed. Taking the thermodynamic theory of oxides system and the kinetic model of film growth into consideration, the stability and growth mechanism of TCC film are analyzed, the existing problems and future developments for the growth of TCC film are proposed.

Key words:  trivalent chromium      oxide film      kinetics      electrochemistry      microstructure     
Received:  18 November 2020     
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51701038);Fundamental Research Funds for the Central Universities(N162503002)
Corresponding Authors:  LIU Xiahe     E-mail:  liuxiahe@smm.neu.edu.cn
About author:  LIU Xiahe, E-mail: liuxiahe@smm.neu.edu.cn

Cite this article: 

WANG Laibin, LIU Xiahe, WANG Mei, GAO Junjie. Research Status and Progress on Growth Kinetics of Trivalent Chromium-based Conversion Film. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 571-578.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.240     OR     https://www.jcscp.org/EN/Y2021/V41/I5/571

StageEnvironmentOxide layers on baseRegularity of corrosion potentialReferences
Two stagespH1.2~4 SurTec 650 solution, <600 sCr(III)-based film on Al or Al alloyPotential decreases first and then tend to stabilize[15,16]
Three stagespH 2.0-4.0 Socosurf TCS solution, <1200 sCr(III)-based film on Al or ZnThe potential first decreases, then increases, and finally stabilizes[17-22]
Four stagespH2.0 Cr(NO3)3 base solution, <1200 sCr(III)-based film on ZnThe potential first decreases, increases, then decreases and finally stabilizes[23,24]
Table 1  Evolution rule of OCP vs time during the growth of TCC coating[15-24]
Model

CMM[55-57]

(air phase formation)

FMM[58,59]

(air phase formation)

PDM[60-62]

(electrochemical formation)

Oxide growth mechanismMigration of interstitial cationsMigration of interstitial anionsMigration of anion vacancies
Growth law

Weak Electric Field: L2=εLt

Strong electric field:

1/L=A-Blnt1/L

Activation energy function of thickness L=Cln(1+Dt)Transport controlled:L=(1/2K)[ln2Ka(b-1)+lnt] Interface controlled:L=Lt=0+(1/b)ln[1+abtexp(-bLt=0)]
Electric FieldεL=V/LIndependent of LIndependent of L
Limiting Growth Step

Weak electric field:

Transport of cations through the film Strong electric field:

Cation injection at m/f interface

Anion transport through the film

Transport controlled:

Oxygen vacancies through film

Interface controlled:

Anion vacancy injection at m/f interface

Dissolutionn/an/aDissolution of metal dissolution of oxide
Interfacial potential dropn/an/aFunction of pH and Vext
Table 2  Summary of the main characteristics of the growth models for passive film[55-62]
1 Mekhalif Z, Forget L, Delhalle J. Investigation of the protective action of chromate coatings on hot-dip galvanized steel: Role of wetting agents [J]. Corros. Sci., 2005, 47: 547
2 Lugauskas A, Demčenko I, Selskienė A, et al. Resistance of chromated zinc coatings to the impact of microscopic fungi [J]. Mater. Sci., 2011, 17: 20
3 Jeffcoate C S, Isaacs H S, Aldykiewicz A J, et al. Chromate in conversion coatings: A XANES study of its concentration and mobility [J]. J. Electrochem. Soc., 2000, 147: 540
4 Wilcox G D. Replacing chromates for the passivation of zinc surfaces [J]. Trans. IMF, 2003, 81: B13
5 Saillard R, Viguier B, Odemer G, et al. Influence of the microstructure on the corrosion behaviour of 2024 aluminium alloy coated with a trivalent chromium conversion layer [J]. Corros. Sci., 2018, 142: 119
6 Gao Z Q, Zhang D W, Liu Z Y, et al. Formation mechanisms of environmentally acceptable chemical conversion coatings for zinc: A review [J]. J. Coat. Technol. Res., 2019, 16: 1
7 Wang Z, Feng Z, Zhang L. Effect of high temperature on the corrosion behavior and passive film composition of 316 L stainless steel in high H2S-containing environments [J]. Corros. Sci., 2020, 174: 108844
8 Li L L, Doran K P, Swain G M. Electrochemical characterization of trivalent chromium process (TCP) coatings on aluminum alloys 6061 and 7075 [J]. J. Electrochem. Soc., 2013, 160: C396
9 Puomi P, Fagerholm H M, Rosenholm J B, et al. Comparison of different commercial pretreatment methods for hot-dip galvanized and Galfan coated steel [J]. Surf. Coat. Technol., 1999, 115: 70
10 Cho K W, Rao V S, Kwon H S. Microstructure and electrochemical characterization of trivalent chromium based conversion coating on zinc [J]. Electrochim. Acta, 2007, 52: 4449
11 Sheu H H, Lee H B, Jian S Y, et al. Investigation on the corrosion resistance of trivalent chromium conversion passivate on electroplated Zn-Ni alloy [J]. Surf. Coat. Technol., 2016, 305: 241
12 Chen W K, Bai C Y, Liu C M, et al. The effect of chromic sulfate concentration and immersion time on the structures and anticorrosive performance of the Cr(III) conversion coatings on aluminum alloys [J]. Appl. Surf. Sci., 2010, 256: 4924
13 Chen W K, Lee J L, Bai C Y, et al. Growth and characteristics of Cr(III)-based conversion coating on aluminum alloy [J]. J. Taiwan Inst. Chem. Eng., 2012, 43: 989
14 Kaesche H. The passivity of zinc in aqueous solutions of sodium carbonate and sodium bicarbonate [J]. Electrochim. Acta, 1964, 9: 383
15 Dardona S, Chen L, Kryzman M, et al. Polarization controlled kinetics and composition of trivalent chromium coatings on aluminum [J]. Anal. Chem., 2011, 83: 6127
16 Campestrini P, van Westing E P M, Hovestad A, et al. Investigation of the chromate conversion coating on Alclad 2024 aluminium alloy: effect of the pH of the chromate bath [J]. Electrochim. Acta, 2002, 47: 1097
17 Qi J T, Hashimoto T, Walton J R, et al. Trivalent chromium conversion coating formation on aluminium [J]. Surf. Coat. Technol., 2015, 280: 317
18 Verdalet-Guardiola X, Fori B, Bonino J P, et al. Nucleation and growth mechanisms of trivalent chromium conversion coatings on 2024-T3 aluminium alloy [J]. Corros. Sci., 2019, 155: 109
19 Verdalet-Guardiola X, Bonino J P, Duluard S, et al. Influence of the alloy microstructure and surface state on the protective properties of trivalent chromium coatings grown on a 2024 aluminium alloy [J]. Surf. Coat. Technol., 2018, 344: 276
20 Cerezo J, Vandendael I, Posner R, et al. Initiation and growth of modified Zr-based conversion coatings on multi-metal surfaces [J]. Surf. Coat. Technol., 2013, 236: 284
21 Li L L, Swain G P, Howell A, et al. The formation, structure, electrochemical properties and stability of trivalent chrome process (TCP) coatings on AA2024 [J]. J. Electrochem. Soc., 2011, 158: C247
22 Qi J T, Hashimoto T, Walton J, et al. Formation of a trivalent chromium conversion coating on AA2024-T351 alloy [J]. J. Electrochem. Soc., 2016, 163: C25
23 Chang Y T, Wen N T, Chen W K, et al. The effects of immersion time on morphology and electrochemical properties of the Cr(III)-based conversion coatings on zinc coated steel surface [J]. Corros. Sci., 2008, 50: 3494
24 Yan H, Zhao Q, Du N, et al. Formation process and corrosion resistance of trivalent chromium passivation film on Zn-plated Q235 steel [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 547
严寒, 赵晴, 杜楠等. 镀锌层三价铬钝化成膜过程及耐蚀性研究 [J]. 中国腐蚀与防护学报, 2017, 37: 547
25 Wen N T, Lin C S, Bai C Y, et al. Structures and characteristics of Cr(III)-based conversion coatings on electrogalvanized steels [J]. Surf. Coat. Technol., 2008, 203: 317
26 Liu X H, Wang M, Li H X, et al. Electrochemical effects of pH value on the corrosion inhibition and microstructure of cerium doped trivalent chromium conversion coating on Zn [J]. Corros. Sci., 2020, 167: 108538
27 Schram T, Goeminne G, Terryn H, et al. Study of the composition of zirconium based chromium free conversion layers on aluminium [J]. Trans. Inst. Met. Finish., 1995, 73: 91
28 Yu H C, Chen B Z, Shi X C, et al. EIS investigation of the deposition of trivalent chromium coatings on Al 6063 alloy [J]. J. Appl. Electrochem., 2009, 39: 303
29 Castle J E, Qiu J H. The application of ICP-MS and XPS to studies of ion selectivity during passivation of stainless steels [J]. J. Electrochem. Soc., 1990, 137: 2031
30 Lavigne O, Alemany-Dumont C, Normand B, et al. Cerium insertion in 316L passive film: Effect on conductivity and corrosion resistance performances of metallic bipolar plates for PEM fuel cell application [J]. Surf. Coat. Technol., 2010, 205: 1870
31 Sidane D, Touzet M, Devos O, et al. Investigation of the surface reactivity on a 304L tensile notched specimen using scanning electrochemical microscopy [J]. Corros. Sci., 2014, 87: 312
32 Paik C H, White H S, Alkire R C. Scanning electrochemical microscopy detection of dissolved sulfur species from inclusions in stainless steel [J]. J. Electrochem. Soc., 2000, 147: 4120
33 Gigandet M P, Faucheu J, Tachez M. Formation of black chromate conversion coatings on pure and zinc alloy electrolytic deposits: role of the main constituents [J]. Surf. Coat. Technol., 1997, 89: 285
34 Guo Y, Frankel G S. Characterization of trivalent chromium process coating on AA2024-T3 [J]. Surf. Coat. Technol., 2012, 206: 3895
35 Kawaguchi H, Funatsumaru O, Sugawara H, et al. Development of trivalent chromium passivation for Zn platng with high corrosion resistance after heating [J]. SAE Int. J. Mater. Manuf., 2016, 9: 833
36 Hesamedini S, Ecke G, Bund A. Structure and formation of trivalent chromium conversion coatings containing cobalt on zinc plated steel [J]. J. Electrochem. Soc., 2018, 165: C657
37 Wen N T, Chen F J, Ger M D, et al. Microstructure of trivalent chromium conversion coating on electrogalvanized steel plate [J]. Electrochem. Solid-State Lett., 2008, 11: C47
38 Gojic M, Marijan D, Kosec L. Electrochemical behavior of duplex stainless steel in borate buffer solution [J]. Corrosion, 2000, 56: 839
39 Niu Y K, Zhang S S, Cheng Q, et al. Characterization and corrosion resistance study of the Fe-Cr films electrodeposited from trivalent chromium sulfate electrolyte [J]. Mater. Res. Express, 2020, 6: 126
40 Guo X F, Wang Y, Sun H, et al. Preparation and corrosion resistance of trivalent chromium passivation coating on galvanized steel [J]. J. Mater. Prot., 2012, 45(2): 35
郭晓斐, 王玥, 孙华等. 镀锌层三价铬钝化膜的制备工艺及性能研究 [J]. 材料保护, 2012, 45(2): 35
41 Survilienė S, Češūnienė A, Juškėnas R, et al. The use of trivalent chromium bath to obtain a solar selective black chromium coating [J]. Appl. Surf. Sci., 2014, 305: 492
42 Munson C A, Swain G M. Structure and chemical composition of different variants of a commercial trivalent chromium process (TCP) coating on aluminum alloy 7075-T6 [J]. Surf. Coat. Technol., 2017, 315: 150
43 García-Antón J, Fernández-Domene R M, Sánchez-Tovar R, et al. Improvement of the electrochemical behaviour of Zn-electroplated steel using regenerated Cr (III) passivation baths [J]. Chem. Eng. Sci., 2014, 111: 402
44 Qi J, Zhang B, Wang Z, et al. Effect of an Fe(II)-modified trivalent chromium conversion process on Cr(VI) formation during coating of AA 2024 alloy [J]. Electrochem. Commun., 2018, 92: 1
45 Qi J T, Gao L, Liu Y, et al. Chromate formed in a trivalent chromium conversion coating on aluminum [J]. J. Electrochem. Soc., 2017, 164: C442
46 Hesamedini S, Bund A. Formation of Cr(VI) in cobalt containing Cr(III)-based treatment solution [J]. Surf. Coat. Technol., 2018, 334: 444
47 Lu J, Wu Y Z, Ma C. X-ray photoelectron spectroscopic studies on passivation films on zinc plating coatings formed by trivalent chromium passivating agents [J]. Electroplat. Finish., 2009, 28(4): 26
卢进, 吴育忠, 马冲. 镀锌三价铬钝化膜的X射线光电子能谱研究 [J]. 电镀与涂饰, 2009, 28(4): 26
48 Luo H, Dong C F, Xiao K, et al. Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution [J]. Appl. Surf. Sci., 2011, 258: 631
49 Ely M, Światowska J, Seyeux A, et al. Role of post-treatment in improved corrosion behavior of trivalent chromium protection (TCP) coating deposited on aluminum alloy 2024-T3 [J]. J. Electrochem. Soc., 2017, 164: C276
50 Wang L T, Seyeux A, Marcus P. Thermal stability of the passive film formed on 316L stainless steel surface studied by ToF-SIMS [J]. Corros. Sci., 2020, 165: 108395
51 Laget V, Jeffcoate C S, Isaacs H S, et al. Dehydration-induced loss of corrosion protection properties in chromate conversion coatings on aluminum alloy 2024-T3 [J]. J. Electrochem. Soc., 2003, 150: B425
52 Yu Z Z, Ni H B, Zhang G S, et al. A study of the composition and structure of chromate conversion coating on aluminum [J]. Appl. Surf. Sci., 1992, 62: 217
53 Marcus P, Protopopoff E. Potential-pH diagrams for adsorbed species, application to sulfur adsorbed on iron in water at 25 ℃ and 300 ℃ [J]. J. Electrochem. Soc., 1990, 137: 2709
54 Liu X H, Wu X Q, Han E-H. Effect of Zn injection on established surface oxide films on 316 L stainless steel in borated and lithiated high temperature water [J]. Corros. Sci., 2012, 65: 136
55 Cabrera N, Mott N F. Theory of the oxidation of metals [J]. Rep. Prog. Phys., 1949, 12: 163
56 Davenport A J, Burstein G T. Concerning the distribution of the overpotential during anodic oxide film growth [J]. J. Electrochem. Soc., 1990, 137: 1496
57 Burstein G T. The current-time relationship during anodic oxide film growth under high electric field [J]. J. Electrochem. Soc., 1989, 136: 936
58 Fehlner F P. Low temperature oxidation of metals and semiconductors [J]. J. Electrochem. Soc., 1984, 131: 1645
59 Fehlner F P, Mott N F. Low-temperature oxidation [J]. Oxid. Met., 1970, 2: 59
60 Chao C Y, Lin L F, Macdonald D D. A point defect model for anodic passive films I. Film growth kinetics [J]. J. Electrochem. Soc., 1981, 128: 1187
61 MacDonald D D. Passivity-the key to our metals-based civilization [J]. Pure Appl. Chem., 1999, 71: 951
62 MacDonald D D. The point defect model for the passive state [J]. J. Electrochem. Soc., 1992, 139: 3434
63 Leistner K, Toulemonde C, Diawara B, et al. Oxide film growth kinetics on metals and alloys: II. Numerical simulation of transient behavior [J]. J. Electrochem. Soc., 2013, 160: C197
64 Goswani K N, Staehle R W. Growth kinetics of passive films on Fe, Fe-Ni, Fe-Cr, Fe-Cr-Ni alloys [J]. Electrochim. Acta, 1971, 16: 1895
65 Bhavani K, Vaidyan V K. Oxidation of iron and influence of an electric field at room temperature [J]. Oxid. Met., 1981, 15: 137
66 Fujii H, Wakabayashi Y, Doi T. Early stages of iron anodic oxidation: Defective growth and density increase of oxide layer [J]. Phys. Rev. Mater., 2020, 4: 033401
67 Fujii H, Wakabayashi Y, Doi T. Kinetics of iron passivation studied by sub-second resolution realtime X-ray reflectivity technique [J]. J. Electrochem. Soc., 2019, 166: E212
68 MacDonald D D. Some personal adventures in passivity—A review of the point defect model for film growth [J]. Russ. J. Electrochem., 2012, 48: 235
69 MacDonald D D. On the existence of our metals-based civilization I. Phase-space analysis [J]. J. Electrochem. Soc., 2006, 153: B213
70 Kim D H, Kim S S, Lee H H, et al. Oxidation kinetics in iron and stainless steel: an in situ X-ray reflectivity study [J]. J. Phys. Chem., 2004, 108B: 20213
71 Fattah-Alhosseini A, Soltani F, Shirsalimi F, et al. The semiconducting properties of passive films formed on AISI 316 L and AISI 321 stainless steels: A test of the point defect model (PDM) [J]. Corros. Sci., 2011, 53: 3186
72 Lv J L, Yang M, Miura H, et al. The effect of surface enriched chromium and grain refinement by ball milling on corrosion resistance of 316L stainless steel [J]. Mater. Res. Bull., 2017, 91: 91
73 Kamrunnahar M, Bao J E, MacDonald D D. Challenges in the theory of electron transfer at passive interfaces [J]. Corros. Sci., 2005, 47: 3111
74 Zhang Y C, MacDonald D D, Urquidi-Macdonald M, et al. Passivity breakdown on AISI Type 403 stainless steel in chloride-containing borate buffer solution [J]. Corros. Sci., 2006, 48: 3812
资助项目 国家自然科学基金 (51701038) 和中央高校基本科研业务费专项 (N162503002)
[1] SHI Jian, HU Xuewen, ZHANG Daoliu, CAO Huidan, HE Bo, PU Hong, GUO Rui, WANG Fei. Influence of Microstructure on Corrosion Resistance of High Strength Weathering Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 721-726.
[2] WANG Yicong, HU Qian, HUANG Feng, LIU Jing. Effect of Microstructure Partition on Micro-polarization Behavior and Pitting Resistance of Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 667-672.
[3] FENG Yanpeng, ZHANG Xian, WU Kaiming, YANG Miao. Influence of Heat Treatment Process on Microstructure and Corrosion Resistance of Ultrafine Bainite Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[4] WANG Jia, LIU Xiaoyong, GAO Lingqing, ZHA Xiaoqin, LUO Xianfu, ZHANG Wenli, ZHANG Hengkun. Hydrogen Absorption Behavior of Near α Ti70 Alloy[J]. 中国腐蚀与防护学报, 2021, 41(4): 549-554.
[5] YI Guanghui, ZHENG Dajiang, SONG Guangling. Influence of Acid Pickling on Morphology, Optical Parameters and Corrosion Resistance of 316L Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(4): 461-468.
[6] RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of Temperature on Corrosion Behavior of 14Cr12Ni3-WMoV Stainless Steel in 0.02 mol/L NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[7] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[8] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[9] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[10] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[11] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[12] ZHAI Sixin, YANG Xingyun, YANG Jilan, GU Jianfeng. Corrosion Properties of Quenching-Partitioning-Tempering Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[13] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[14] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[15] FU Haibo, LIU Xiaoru, SUN Yuan, CAO Dali. Corrosion Resistance of Epoxy Resin/recrystallized Silicon Carbide Composite[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
No Suggested Reading articles found!