Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (2): 169-177    DOI: 10.11902/1005.4537.2021.003
Current Issue | Archive | Adv Search |
Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Fresh Water and Salt Water
CAO Jingyi1, FANG Zhigang1, LI Liang1, FENG Yafei1, WANG Xingqi2, SHOU Haiming3, YANG Yange2(), CHU Guangzhe1, YIN Wenchang1
1.Unit 92228, People's Liberation Army, Beijing 100072, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Unit 92942, People's Liberation Army, Beijing 100161, China
Download:  HTML  PDF(11099KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Corrosion behavior of domestic galvanized steel in salt water and fresh water was investigated by means of electrochemical impedance spectroscopy and electrochemical noise. The results indicated that corrosion process of galvanized steel can be divided into three different stages both in salt water and fresh water, and distinguished electrochemical characteristic in each stage can be observed. Corrosion rate of the galvanized steel in salt water was obviously higher than that in fresh water. The formed corrosion products are rod-like or lamellar on the surface of galvanized steel after immersion in salt water, but less protectiveness for the substrate. Whereas, the formed corrosion products are compact film composed of sphere-like particulates on the surface of galvanized steel after immersion in fresh water, which can effectively protect the substrate from further corrosion.

Key words:  galvanized steel      water environment      electrochemical impedance spectroscopy      electrochemical noise     
Received:  05 January 2021     
ZTFLH:  TG174  
Corresponding Authors:  YANG Yange     E-mail:  ygyang@imr.ac.cn
About author:  YANG Yange, E-mail: ygyang@imr.ac.cn

Cite this article: 

CAO Jingyi, FANG Zhigang, LI Liang, FENG Yafei, WANG Xingqi, SHOU Haiming, YANG Yange, CHU Guangzhe, YIN Wenchang. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Fresh Water and Salt Water. Journal of Chinese Society for Corrosion and protection, 2021, 41(2): 169-177.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.003     OR     https://www.jcscp.org/EN/Y2021/V41/I2/169

Fig.1  Microstructure of the cross-section of the domestic galvanized steel
Fig.2  Evolution of the OCP of the domestic galvanized steel with immersion time
Fig.3  Nyquist (a, d, g), modules (b, e, h) and phase angle (c, f, h) plots of the domestic galvanized steel in salt water during the immersion of 0~144 h (a~c), 144~600 h (d~f) and 600~720 h (g, h)
Fig.4  Nyquist (a, d, g), modules (b, e, h) and phase angle (c, f, h) plots of the domestic galvanized steel in fresh water during the immersion 0~144 h (a~c), 144~336 h (d~f) and 336~720 h (g~i)
Fig.5  Low-frequency modules of the domestic galvanized steel in two kinds of water with immersion time: (a) salt water, (b) fresh water
Fig.6  Raw electrochemical noise date (a, c, e, g) and current noise after DC-drift (b, d, f, h) of the domestic galvanized steel in salt water during the immersion of 4 h (a, b), 48 h (c, d), 240 h (e, f) and 600 h (g, h)
Fig.7  Hilbert-Huang spectra of current noise of the domestic galvanized steel in salt water during the immersion of 4 h (a), 48 h (b), 240 h (c) and 600 h (d)
Fig.8  Raw electrochemical noise date (a, c, e, g) and current noise after DC-drift (b, d, f, h) of the domestic galvanized steel in salt water during the immersion of 4 h (a, b), 48 h (c, d), 240 h (e, f) and 600 h (g, h)
Fig.9  Hilbert-Huang spectra of current noise of the domestic galvanized steel in salt water during the immersion of 4 h (a), 48 h (b), 240 h (c) and 600 h (d)
Fig.10  Morphologies of the domestic galvanized steel after 720 h immersion: salt water (a), fresh water (b)
1 Wang Y B. Investigation on interfacial microstructures and properties of hot-dip galvanizing coating [D]. Xi'an: Northwestern Polytechnical University, 2016
王友彬. 热浸镀锌镀层界面结构与性能研究 [D]. 西安: 西北工业大学, 2016
2 Cui Z Y, Li X G, Xiao K, et al. Corrosion behavior of field-exposed zinc in a tropical marine atmosphere [J]. Corrosion, 2014, 70: 731
3 De La Fuente D, Castaño J G, Morcillo M. Long-term atmospheric corrosion of zinc [J]. Corros. Sci., 2007, 49: 1420
4 Meng Y, Liu L J, Zhang D W, et al. Initial formation of corrosion products on pure zinc in saline solution [J]. Bioact. Mater., 2019, 4: 87
5 Chung S C, Lin A S, Chang J R, et al. EXAFS study of atmospheric corrosion products on zinc at the initial stage [J]. Corros. Sci., 2000, 42: 1599
6 Yang H Y, Ding G Q, Huang G Q, et al. Corrosion behavior of galvanized steels in different atmospheric environments [J]. Corros. Prot., 2017, 38: 369
杨海洋, 丁国清, 黄桂桥等. 镀锌钢在不同大气环境中的腐蚀行为 [J]. 腐蚀与防护, 2017, 38: 369
7 Zhong X Z, Wang Z Y, Liu Y J, et al. Corrosion behavior of galvanized steel in simulated ocean atmosphere [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 151
钟西舟, 王振尧, 刘艳洁等. 镀锌钢在模拟海洋大气环境下的腐蚀行为 [J]. 中国腐蚀与防护学报, 2015, 35: 151
8 Yadav A P, Katayama H, Noda K, et al. Effect of Fe-Zn alloy layer on the corrosion resistance of galvanized steel in chloride containing environments [J]. Corros. Sci., 2007, 49: 3716
9 Wang X D, Gao L Y, Chen X P, et al. Corrosion resistance of domestic galvanized steel sheet [J]. Mater. Prot., 2002, 35(10): 12
王向东, 高令远, 陈小平等. 国产镀锌钢板的耐蚀性研究 [J]. 材料保护, 2002, 35(10): 12
10 Granese S L, Rosales B M, Fernandez A. Behavior of Zn in atmospheres containing sulfur dioxide and chloride ions [A]. 11th International Corroion Congress [C]. Florence: International Corrosion Council, 2009
11 Svensson J E, Johansson L G. A Laboratory study of the initial stages of the atmospheric corrosion of zinc in the presence of NaCl; influence of SO2 and NO2 [J]. Corros. Sci., 1993, 34: 721
12 Ning L J, Du A L, Xu L K, et al. Corrosion behavior of galvanized steel in NaCl solution [J]. Corros. Sci. Prot. Technol., 2012, 24: 291
宁丽君, 杜爱玲, 许立坤等. 镀锌层在NaCl溶液中的腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2012, 24: 291
13 Liu S, Sun H Y, Fan H J, et al. Progress of research on corrosion behavior of galvanized steel [J]. Mater. Prot., 2012, 45(12): 42
刘栓, 孙虎元, 范汇吉等. 镀锌钢腐蚀行为的研究进展 [J]. 材料保护, 2012, 45(12): 42
14 Liu S, Sun H Y, Sun L J, et al. Effects of Zn(OH)2 on corrosion behavior of galvanized steel in seawater [J]. Mater. Eng., 2013, (8): 60
刘栓, 孙虎元, 孙立娟等. 海水中Zn(OH)2对镀锌钢腐蚀行为的影响 [J]. 材料工程, 2013, (8): 60
15 Marder A R. The metallurgy of zinc-coated steel [J]. Prog. Mater. Sci., 2000, 45: 191
[1] CANG Yu, HUANG Yuhui, WENG Shuo, XUAN Fuzhen. Effect of Environmental Variables on Galvanic Corrosion Performance of Welded Joint of Nuclear Steam Turbine Rotor[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[2] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[3] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[4] SUN Haijing, QIN Ming, LI Lin. Performance of Al-Zn-In-Mg-Ti Sacrificial Anode in Simulated Low Dissolved Oxygen Deep Water Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[5] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[6] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[7] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[8] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[9] Xiuling LAN,Guangming LIU,Jiesheng ZHOU,Zhilei LIU,Shusen PENG,Maodong LI. Preparation and Properties of Organosilicone/SiO2Hybrid Sol Modified Acrylic Resin[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[10] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[11] Yue QIAO, Zhiping ZHU, Lei YANG, Zhifeng LIU. Monitoring and Simulated Experiments of Oxidation-Reduction Potential of Boiler Feedwater at High Temperatures[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[12] Sanxi DENG, Xiaoyu YAN, Ke CHAI, Jinyi WU, Hongwei SHI. Effect of Pseudomonas sp. on Decomposition and Anticorrosion Behavior of Polysiloxane Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[13] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[14] Qi GUI, Dajiang ZHENG, Guangling SONG. Electrochemically Accelerated Evaluation of Protectiveness for an Alkyd Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[15] Pengliang AN, Ping LIANG, Jianmin REN, Yanhua SHI, Feng LIU, Siyao CHEN. Characteristics on Electrochemical Noise of Pitting Corrosion for High Nitrogen Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2018, 38(1): 26-32.
No Suggested Reading articles found!