Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (2): 178-186    DOI: 10.11902/1005.4537.2021.005
Current Issue | Archive | Adv Search |
Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water
CAO Jingyi1, FANG Zhigang1, FENG Yafei1, LI Liang1, YANG Yange2(), SHOU Haiming3, WANG Xingqi2, ZANG Bolin1
1.Unit 92228, People's Liberation Army, Beijing 100072, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Unit 92942, People's Liberation Army, Beijing 100161, China
Download:  HTML  PDF(9249KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Corrosion behavior of domestic galvanized steel in different reverse osmosis waters was investigated by means of open circuit potential measurement, electrochemical impedance spectroscopy and microstructure observation. The galvanized steel showed similar electrochemical characteristics during the failure process in different reverse osmosis waters produced with influent seawaters of different salinity. The corrosion process of galvanized steel was changed with the adjustment of the quality of reverse osmosis water via addition of calcium chloride, sodium chloride and sodium bicarbonate. Corrosion performance of the galvanized steel was related with falling off and adhesion of the formed corrosion products.

Key words:  galvanized steel      corrosion      electrochemical impedance spectroscopy      reverse osmosis water     
Received:  13 January 2021     
ZTFLH:  TG174  
Corresponding Authors:  YANG Yange     E-mail:  ygyang@imr.ac.cn
About author:  YANG Yange, E-mail: ygyang@imr.ac.cn

Cite this article: 

CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water. Journal of Chinese Society for Corrosion and protection, 2021, 41(2): 178-186.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.005     OR     https://www.jcscp.org/EN/Y2021/V41/I2/178

No.pHTDS / mg·L-1Turbidity / NTUCl- / mg·L-1Bicarbonate / mg·L-1Hardness (CaCO3) / mg·L-1Ca2+ / mg·L-1Mg2+ / mg·L-1
1#8.273.860.15<0.02------------
2#7.725.650.15<0.02------------
3#7.13120.40.20<0.02------------
4#6.8671.10.27<0.0288.4527.757.702.04
5#6.62103.20.25<0.0287.8485.7021.807.49
6#6.5489.00.26<0.0273.2055.9713.475.35
Table 1  Properties of different fresh water
Fig.1  OCP vs time of the galvanized steel in different reverse osmosis water
Fig.2  Nyquist plot of galvanized steel in different reverse osmosis water at the beginning immersion
Fig.3  Nyquist (a), modules (b, d) and phase angle (c, e) plots of the galvanized steel in 1# reverse osmosis water during the immersion 4~48 h (a~c) and 72~720 h (d, e)
Fig.4  Nyquist (a), modules (b, d) and phase angle (c, e) plots of the galvanized steel in 2# reverse osmosis water during the immersion 4~48 h (a~c) and 72~720 h (d, e)
Fig.5  Nyquist (a), modules (b, d) and phase angle (c, e) plots of the galvanized steel in 3# reverse osmosis water during the immersion 4~48 h (a~c) and 72~720 h (d, e)
Fig.6  Low-frequency modules vs time (a) and equivalent circuit (b) of the galvanized steel in different reverse osmosis water
Time / hCPEf / Ω-1·cm-2·snRf / Ω.cm2CPEdl / Ω-1·cm-2·snRt / Ω·cm2
42.5×10-610576.77.8×10-621525.2
245.2×10-62280.66.1×10-515234.2
487.0×10-61785.38.2×10-59629.1
724.7×10-62040.38.4×10-513602.0
965.2×10-61847.69.8×10-515721.6
1206.4×10-61622.09.8×10-59795.7
1445.1×10-61075.71.1×10-49261.8
1924.9×10-6764.91.1×10-49972.5
2401.0×10-51038.21.8×10-410006.5
2882.9×10-53303.03.7×10-45831.9
3843.1×10-52783.92.4×10-417830.0
4806.6×10-6578.71.8×10-415188.9
600------------
7204.3×10-61509.81.6×10-448933.2
Table 2  Fitting results of the EIS for the the galvanized steel in 1# reverse osmosis water

Time

h

CPEf

Ω-1·cm-2·sn

Rf

Ω·cm2

CPEdl

Ω-1·cm-2·sn

Rt

Ω·cm2

41.6×10-628201.52.8×10-6125931.9
241.7×10-67418.81.1×10-533472.3
481.0×10-58385.65.7×10-514180.1
723.8×10-62878.05.3×10-522454.6
963.7×10-62879.15.8×10-522500.0
1204.1×10-63456.07.2×10-519076.8
1444.0×10-62049.47.7×10-522284.6
1925.1×10-61069.06.2×10-522364.0
2404.8×10-61362.58.5×10-521502.5
2883.9×10-61252.51.0×10-421513.8
384------------
4802.5×10-62411.09.5×10-538901.7
6001.6×10-628201.52.8×10-6125931.9
7201.7×10-67418.81.1×10-533472.3
Table 3  Fitting results of the EIS for the the galvanized steel in 2# reverse osmosis water

Time

h

CPEf

Ω-1·cm-2·sn

Rf

Ω·cm2

CPEdl

Ω-1·cm-2·sn

Rt

Ω·cm2

41.0×10-61212.81.1×10-510070.0
241.5×10-6498.35.0×10-58845.8
481.7×10-6451.67.8×10-57196.6
721.6×10-6439.59.2×10-58496.7
961.6×10-6472.71.1×10-48229.2
1201.9×10-6411.01.8×10-47875.6
1441.3×10-6445.62.0×10-49024.9
1922.3×10-6286.72.5×10-410280.8
2402.4×10-6211.13.8×10-420958.4
2881.8×10-6366.54.9×10-4105075.5
3842.8×10-6765.34.9×10-428722.9
4805.0×10-61185.66.3×10-413817.4
6001.0×10-61212.81.1×10-510070.0
7201.5×10-6498.35.0×10-58845.8
Table 4  Fitting results of the EIS for the the galvanized steel in 3# reverse osmosis water
Fig.7  Rf (a) and Rt (b) vs time of the galvanized steel in different reverse osmosis water
Fig.8  Morphologies of the domestic galvanized steel after 720 h immersion: (a) 1#, (b) 2#, (c) 3#
Reverse osmosis waterCOZnNa
1#11.937.441.98.8
2#8.143.838.99.2
3#11.731.951.45.0
Table 5  Composition of the corrosion product of the galvanized steel after 720 h immersion in different reverse osmosis water
Fig.9  OCP vs time of the galvanized steel in different conditioned water
Fig.10  Nyquist plots of the galvanized steel in 4# (a, d), 5# (b, e) and 6# (c, f) conditioned water during 720 h immersion of I stage (a~c) and II stage (d~f)
Fig.11  Low-frequency modules of the galvanized steel in different conditioned water
Fig.12  Morphologies of the galvanized steel after 720 h immersion in 4# (a), 5# (b) and 6# (c) conditioned water
Conditioned waterCOZnNa
4#11.827.750.310.2
5#9.835.447.27.6
6#6.929.954.88.4
Table 6  Composition of the corrosion product of the galvanized steel after 720 h immersion in different conditioned water
1 Marder A R. The metallurgy of zinc-coated steel [J]. Prog. Mater. Sci., 2000, 45: 191
2 Wang Y B. Investigation on interfacial microstructures and properties of hot-dip galvanizing coating [D]. Xi'an: Northwestern Polytechnical University, 2016
王友彬. 热浸镀锌镀层界面结构与性能研究 [D]. 西安: 西北工业大学, 2016
3 Cui Z Y, Li X G, Xiao K, et al. Corrosion behavior of field-exposed zinc in a tropical marine atmosphere [J]. Corrosion, 2019, 70: 731
4 De La Fuente D, Castaño J G, Morcillo M. Long-term atmospheric corrosion of zinc [J]. Corros. Sci., 2007, 49: 1420
5 Chung S C, Lin A S, Chang J R, et al. EXAFS study of atmospheric corrosion products on zinc at the initial stage [J]. Corros. Sci., 2000, 42: 1599
6 Yang H Y, Ding G Q, Huang G Q, et al. Corrosion behavior of galvanized steels in different atmospheric environments [J]. Corros. Prot., 2017, 38: 369
杨海洋, 丁国清, 黄桂桥等. 镀锌钢在不同大气环境中的腐蚀行为 [J]. 腐蚀与防护, 2017, 38: 369
7 Zhong X Z, Wang Z Y, Liu Y J, et al. Corrosion behavior of galvanized steel in simulated ocean atmosphere [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 151
钟西舟, 王振尧, 刘艳洁等. 镀锌钢在模拟海洋大气环境下的腐蚀行为 [J]. 中国腐蚀与防护学报, 2015, 35: 151
8 Wang X D, Gao L Y, Chen X P, et al. Corrosion resistance of domestic galvanized steel sheet [J]. Mater. Prot., 2002, 35(10): 12
王向东, 高令远, 陈小平等. 国产镀锌钢板的耐蚀性研究 [J]. 材料保护, 2002, 35(10): 12
9 Granese S L, Rosales B M, Fernandez A. Behavior of Zn in atmospheres containing sulfur dioxide and chloride ions [A]. 11th International Corrosion Congress [C]. Florence, 2009
10 Svensson J E, Johansson L G. A Laboratory study of the initial stages of the atmospheric corrosion of zinc in the presence of NaCl; Influence of SO2 and NO2 [J]. Corros. Sci., 1993, 34(5): 721
11 Meng Y, Liu L J, Zhang D W, et al. Initial formation of corrosion products on pure zinc in saline solution [J]. Bioact. Mater., 2019, 4: 87
12 Yadav A P, Katayama H, Noda K, et al. Effect of Fe-Zn alloy layer on the corrosion resistance of galvanized steel in chloride containing environments [J]. Corros. Sci., 2007, 49: 3716
13 Ning L J, Du A L, Xu L K, et al. Corrosion behavior of galvanized steel in NaCl solution [J]. Corros. Sci. Prot. Technol., 2012, 24: 291
宁丽君, 杜爱玲, 许立坤等. 镀锌层在NaCl溶液中的腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2012, 24: 291
14 Liu S, Sun H Y, Sun L J, et al. Effect of Zn(OH)2 on corrosion behavior of galvanized steel in seawater [J]. Mater. Eng., 2013, (8): 60
刘栓, 孙虎元, 孙立娟等. 海水中Zn(OH)2对镀锌钢腐蚀行为的影响 [J]. 材料工程, 2013, (8): 60
15 Liu S, Sun H Y, Fan H J, et al. Progress of research on corrosion behavior of galvanized steel [J]. Mater. Prot., 2012, 45(12): 42
刘栓, 孙虎元, 范汇吉等. 镀锌钢腐蚀行为的研究进展 [J]. 材料保护, 2012, 45(12): 42
[1] RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of Temperature on Corrosion Behavior of 14Cr12Ni3-WMoV Stainless Steel in 0.02 mol/L NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[2] CHEN Wen, HUANG Dexing, WEI Feng. Inhibition Effect of Brainea Insignis Extract Against Carbon Steel Corrosion in HCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 376-382.
[3] ZUO Yong, QIN Yueqiang, SHEN Miao, YANG Xinmei. Effect of Cr2+/Cr3+ on Galvanic Corrosion Inhibition of Dissimilar Metallic Materials in 46.5%LiF-11.5%NaF-42.0%KF Molten Salts System[J]. 中国腐蚀与防护学报, 2021, 41(3): 341-345.
[4] MA Gang, GU Yanhong, ZHAO Jie. Research Progress on Sulfate-reducing Bacteria Induced Corrosion of Steels[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[5] LIN Zhaohui, MING Nanxi, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Hydrostatic Pressure on Corrosion Behavior of X70 Steel in Simulated Sea Water[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[6] LI Ruitao, XIAO Bo, LIU Xiao, ZHU Zhongliang, CHENG Yi, LI Junwan, CAO Jieyu, DING Haimin, ZHANG Naiqiang. Corrosion Behavior of Low Alloy Heat-resistant Steel T23 in High-temperature Supercritical Carbon Dioxide[J]. 中国腐蚀与防护学报, 2021, 41(3): 327-334.
[7] WANG Dongliang, DING Huaping, MA Yunfei, GONG Pan, WANG Xinyun. Research Progress on Corrosion Resistance of Metallic Glasses[J]. 中国腐蚀与防护学报, 2021, 41(3): 277-288.
[8] CANG Yu, HUANG Yuhui, WENG Shuo, XUAN Fuzhen. Effect of Environmental Variables on Galvanic Corrosion Performance of Welded Joint of Nuclear Steam Turbine Rotor[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[9] LIU Xiaofei, WANG Chunyu, ZHOU Junfeng, JIN Haozhe, WANG Chao. Corrosion Mechanism of Air Cooler in a CO2 Removal System with Amine Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 389-394.
[10] QIAO Zhongli, WANG Ling, SHI Yanhua, YANG Zongkui. Microstructure and Corrosion Resistance of Welded Joint of 14Cr1MoR Steel[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
[11] SUN Dan, LI Wei, WEI Runzhi, WANG Sheng, HAN Jiaxing, LIU Zheng. Theoretical Evaluation of 2-aminofluorenic Double Schiff Base Corrosion Inhibitor Based on Quantum Chemistry[J]. 中国腐蚀与防护学报, 2021, 41(3): 405-410.
[12] WANG Xiaoge, GAO Kewei, YAN Luchun, YANG Huisheng, PANG Xiaolu. Effect of Ce on Corrosion Resistance of Films of ZnAlCe-layered Double Hydroxides on Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[13] XIONG Yi, LIU Guangming, ZHAN Fuyuan, MAO Xiaofei, LUO Qin, HONG Jia, NI Jinfei, LIU Yongqiang. Hot Corrosion and Failure Behavior of Three Thermal Spraying Coatings in Simulated Atmosphere/Coal Ash Environment[J]. 中国腐蚀与防护学报, 2021, 41(3): 369-375.
[14] JIANG Bochen, CAO Jiangdong, CAO Xueyu, WANG Jiantao, ZHANG Shaopeng. Hot Corrosion Behavior of Gd2(Zr1-xCex)2O7 Thermal Barrier Coating Ceramics Exposed to Artificial Particulates of CMAS[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[15] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
No Suggested Reading articles found!