Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (3): 233-240    DOI: 10.11902/1005.4537.2017.170
Current Issue | Archive | Adv Search |
Effect of S2- on Corrosion Behavior of A710 Steel in NaCl Solution
Yukun WANG1,2, Jing LIU1(), Qian HU1, Feng HUANG1
1 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2 Steel Common Synergy Innovation Center, University of Science and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(6925KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of A710 steel in high S2- containing 3.5% (mass fraction) NaCl solutions was investigated by means of weight loss measurement, electrochemical measurement, FE-SEM and XRD. Results showed that the addition of S2- could promote the activation of the steel surface, which in turn leads to the increase of passivation current density. The corrosion product scale formed in the S2- containing NaCl solutions was loose with pores and cracks, while pitting corrosion occurred beneath the corrosion product scale.

Key words:  high-strength steel      S2-      marine environment      pitting     
Received:  17 October 2017     
ZTFLH:  TG142.71  
Fund: Supported by Hubei Science and Technology Support Plan Project (2015BAA083)

Cite this article: 

Yukun WANG, Jing LIU, Qian HU, Feng HUANG. Effect of S2- on Corrosion Behavior of A710 Steel in NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2018, 38(3): 233-240.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.170     OR     https://www.jcscp.org/EN/Y2018/V38/I3/233

Fig.1  Average corrosion rates of A710 steel after immersion in two solutions for different time
Fig.2  Surface micro-morphologies of A710 steel after immersing in 3.5%NaCl solution for 1 d (a), 4 d (b), 16 d (c) and 32 d (d)
Fig.3  Surface micro-morphologies of A710 steel after immersing in 400 mg/L Na2S+3.5%NaCl solution for 1 d (a), 4 d (b),16 d (c) and 32 d (d)
Fig.4  Cross sections of A710 steel after immersion in 3.5%NaCl (a) and 400 mg/L Na2S+3.5%NaCl (b) solutions for 32 d
Fig.5  Corrosion morphologies of A710 steel after immersed in 400 mg/L Na2S+3.5%NaCl solution for 1 d (a), 4 d (b), 16 d (c) and 32 d (d)
Fig.6  XRD spectra of corrosion products of A710 steel after immersion in 3.5%NaCl (a) and 400 mg/L Na2S+3.5%NaCl (b) solutions for 16 and 32 d
Fig.7  Potentiodynamic polarization curves of A710 steel after immersed in 3.5%NaCl (a) and 400 mg/L Na2S+3.5%NaCl (b) solutions for different time
Immersion time / d 3.5%NaCl 400 mg/L Na2S+3.5%NaCl
Ecorr / mV Passivation potential range / mV ΔE / mV Ecorr / mV Passivation potential range / mV ΔE / mV
1 -965 -855~-633 222 -1012 -872~-656 216
4 -955 -877~-645 232 -1030 -843~-657 186
16 -871 -785~-631 154 -1153 -844~-739 105
32 -862 -784~-612 172 -1141 -785~-621 164
Table 1  Ecorr and passivation potential range of A710 steel after immersed in two solutions for different time
Fig.8  Blunted current densities of A710 steel after immersed in two solutions for different time
Fig.9  Effect of S2- on the corrosion process of A710 steel in 3.5%NaCl solution
[1] Hu Q, Liu J, Wang Y K, et al.Corrosion performance of different zones for weld joint of A710 steel in 3.5%NaCl solution[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 611(胡骞, 刘静, 王玉昆等. 不同组织A710钢在NaCl溶液中耐腐蚀性对比研究[J]. 中国腐蚀与防护学报, 2016, 36: 611)
[2] Feng L J, Ma X J, Lei A L, et al.Influence of sulfide on corrosion of carbon steel[J]. Corros. Sci. Prot. Technol., 2006, 18: 180(冯拉俊, 马小菊, 雷阿利等. 硫离子对碳钢腐蚀性的影响[J]. 腐蚀科学与防护技术, 2006, 18: 180)
[3] Xiao L H, Wang Q, Wang B, et al.Investigation on the corrosion behavior of Ag-Cu-Al-Y alloys in Na2S solution[J]. Precious Met., 2014, (1): 36(肖丽华, 王琪, 王斌等. Ag-Cu-Al-Y合金在Na2S溶液中的腐蚀行为研究[J]. 贵金属, 2014, (1): 36)
[4] Xu J.Research on corrosivity of different sulfides[J]. Corros. Prot. Petrochem. Ind., 2005, 22(4): 9(徐静. 不同硫化物的腐蚀性研究[J]. 石油化工腐蚀与防护, 2005, 22(4): 9)
[5] Sayed S M, Ashour E A, Youssef G I.Effect of sulfide ions on the stress corrosion behavior of Al-brass and Cu10Ni alloys in salt water[J]. J. Mater. Sci., 2002, 37: 2267
[6] Marcus P, Talaho H.The sulphur-induced breakdown of the passive film and pitting studied on nickel and nickel alloys[J]. Corros. Sci., 1989, 29: 455
[7] Allam N K, Ashour E A, Hegazy H S, et al.Effects of benzotriazole on the corrosion of Cu10Ni alloy in sulfide-polluted salt water[J]. Corros. Sci., 2005, 47: 2280
[8] Dong Y Y, Huang F, Cheng P, et al.Evolution of corrosion product scales on an acid proof pipeline steel X65 MS in H2S containing environment[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 386(董洋洋, 黄峰, 程攀等. X65 MS耐酸管线钢在H2S环境中腐蚀产物膜的演变[J]. 中国腐蚀与防护学报, 2015, 35:386)
[9] Nazeer A A, Allam N K, Youssef G I, et al.Effect of glycine on the electrochemical and stress corrosion behaviour of Cu10Ni alloys in sulfide polluted salt water[J]. Ind. Eng. Chem. Res., 2011, 50: 8796
[10] Ashour E A, Khorshed L A, Youssef G I, et al.Electrochemical and stress corrosion cracking behavior of alpha-Al bronze in sulfide-polluted salt water:effect of environmentally-friendly additives[J]. Mater. Sci. Appl., 2014, 5: 10
[11] Xie Q, Zhai X H, Ge H H, et al.Comparison of corrosion behavior on stailess steel between Cl and S ions[J]. East China Electric Power, 2003, 31: 860(解群, 翟祥华, 葛红花等. 氯离子和硫离子对不锈钢侵蚀性比较[J]. 华东电力, 2003, 31: 860)
[12] Jiang T.Study on pitting electrochemical behavior of carbon steel in Alkaline solution [D]. Beijing: Beijing University of Chemical Technology, 2000: 45(姜涛. 碳钢在碱性溶液中孔蚀电化学研究 [D]. 北京: 北京化工大学, 2000: 45)
[13] Cao H Z, Zhang J Y, Zheng G Q, et al.Polarization behavior of carbon steel in sulfur-bearing solution[J]. Corros. Prot., 2002, 23: 427(曹华珍, 张九渊, 郑国渠等. 碳钢在含硫介质中的极化行为[J]. 腐蚀与防护, 2002, 23: 427)
[14] Wu Y C.Corrosion mechanism of carbon steel in petrochemical environment and corrosion monitoring technology of petrochemical equipment [D]. Xiamen: Xiamen University, 2013: 6(伍运昌. 石化环境中碳钢的腐蚀机理及石化设备腐蚀监测技术的研究 [D]. 厦门: 厦门大学, 2013: 6)
[15] Zhao Y J, Wang Y X, Gao L F, et al.Study on accelerated corrosion rust layer of Q355 weathering steel[J]. Shandong Metall., 2016, 38(1): 31(赵英杰, 王月香, 高立福等. Q355耐候钢加速腐蚀锈层演变规律研究[J]. 山东冶金, 2016, 38(1): 31)
[16] Li K B.Effect of ion selectivity of FeS on corrosion of matrix metal[J]. Chem. Res. Appl., 1996, 8: 348(李可彬. FeS膜的离子选择性对基体金属腐蚀的影响[J]. 化学研究与应用, 1996, 8: 348)
[17] Shi Z Q, Zhang X Y, Wang Y F.Effect of SO42- on pitting behavior of X100 pipeline steel in salty solution[J]. J. China Univ. Petrol.(Nat. Sci. Ed.), 2016, 40: 128(石志强, 张秀云, 王彦芳. SO42-对X100管线钢在盐渍性溶液中的点蚀行为的影响[J]. 中国石油大学学报(自然科学版), 2016, 40: 128)
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] LIU Yang, WU Jinyi, YAN Xiaoyu, CHAI Ke. Effect of Bacillus flexus on Degradation of Polyurethane Varnish Coating in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[3] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[4] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[5] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[6] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[7] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[8] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[9] JIA Yizheng, WANG Baojie, ZHAO Mingjun, XU Daokui. Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[10] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[11] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[12] WANG Biao,DU Nan,ZHANG Hao,WANG Shuaixing,ZHAO Qing. Accelerating Effect of Pitting Corrosion Products on Metastable Pitting Initiation and the Stable Pitting Growth of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[13] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[14] Siqi ZHANG,Nan DU,Meifeng WANG,Shuaixing WANG,Qing ZHAO. Effect of Cathode Area on Stable Pitting Growth Rate of 304 Stainless Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(6): 551-557.
[15] Bobo HUANG,Ping LIU,Xinkuan LIU,Pinxiu MEI,Xiaohong CHEN. Seawater Corrosion Behavior of New 70-1 Tin Brass Net in Waters off Dachen Island for Two Years[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
No Suggested Reading articles found!