Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (2): 113-121    DOI: 10.11902/1005.4537.2013.262
Current Issue | Archive | Adv Search |
Influence of Environmental Factors on Property of Passive Film Formed on X100 Pipeline Steel
ZHAO Yang1, LIANG Ping1(), SHI Yanhua1, ZHANG Yunxia2
1. School of Mechanical Engineering, Liaoning Shihua University, Fushun 113001, China
2. Continual Education Institute, Liaoning Shihua University, Fushun 113001, China
Download:  HTML  PDF(1231KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effect of temperature, pH and chloride ion concentration on the property of passive films formed on X100 pipeline steel were investigated in an artificial soil solution by polarization curves, electrochemical impedance spectroscopy (EIS) and capacitance measurements technique. The results polarization measurement showed that the range of passive potential and the corrosion resistance of the steel decreased with the increasing temperature from 20 to 60 ℃, the increasing Cl- concentration from 0.001 to 0.005 mol/L and the decreasing pH value from 10.84 to 9.27 respectively. EIS results displayed that the compactness of passive films decreased with the increasing temperature and Cl- concentration, and the decreasing pH respectively, while temperature exhibited the strongest effect among the three factors on the compactness of the passive films. The results of capacitance measurement and theoretical calculation implied that the Cl- concentration exhibited the strongest effect on the thickness of passive film, while temperature exhibited the strongest effect on the defect density and diffusion coefficient of the passive films.

Key words:  X100 pipeline steel      environmental factor      semi-conductive property      Mott-Schottky analysis      EIS     
Received:  10 December 2013     
ZTFLH:  TG142.71  

Cite this article: 

ZHAO Yang, LIANG Ping, SHI Yanhua, ZHANG Yunxia. Influence of Environmental Factors on Property of Passive Film Formed on X100 Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2015, 35(2): 113-121.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.262     OR     https://www.jcscp.org/EN/Y2015/V35/I2/113

Experimental condition Solution composition
Temperature / ℃ 20 0.5 mol/L NaHCO3
40 0.5 mol/L NaHCO3
60 0.5 mol/L NaHCO3
pH 9.27 0.05 mol/L NaHCO3+0.25 mol/L Na2CO3
9.78 0.25 mol/L NaHCO3+0.25 mol/L Na2CO3
10.84 0.05 mol/L NaHCO3+0.5 mol/L Na2CO3
Cl-/molL-1 0.001 0.5 mol/L NaHCO3+0.001 mol/L NaCl
0.003 0.5 mol/L NaHCO3+0.003 mol/L NaCl
0.005 0.5 mol/L NaHCO3+0.005 mol/L NaCl
Table 1  Solution compositions used for different experimental conditions
Fig.1  Effects of temperature (a), pH (b) and Cl- concentration (c) on the polarization curves of X100 pipeline steel in high pH solutions
Fig.2  Nyquist plots of passive films formed on X100 steel under various potentials at 20 ℃ (a), 40 ℃ (b) and 60 ℃ (c)
Fig.3  Equivalent circuit of the electrochemical impedance spectroscopies
Temperature
Formation
potential / V
RS
Ωcm2
Qf×10-4
Fcm2
n1 Rf×104
Ωcm2
Qdl×10-4
Fcm2
n2 Rct×103
Ωcm2
20 0.1 11.82 5.750 0.927 3.170 6.82 0.912 5.360
0.2 14.14 5.403 0.926 3.581 6.88 0.911 9.761
0.3 10.67 5.359 0.929 4.057 5.68 0.920 12.19
0.4 6.058 5.074 0.927 5.233 4.28 0.937 14.01
40 0.1 8.932 5.970 0.901 1.588 4.63 0.901 2.491
0.2 6.027 7.249 0.917 2.652 5.54 0.945 5.854
0.3 5.469 6.542 0.913 4.414 6.87 0.916 6.542
0.4 5.285 5.536 0.904 5.125 7.72 0.925 6.933
60 0.1 4.311 4.942 0.945 1.088 6.70 0.914 2.246
0.2 5.124 5.893 0.913 2.430 7.75 0.946 4.562
0.3 3.461 5.714 0.925 4.018 6.21 0.936 5.623
0.4 6.156 6.321 0.905 5.048 5.45 0.906 5.825
Table 2  Fitting results of the electrochemical impedance spectroscopies
Fig.4  Nyquist plots of the passive films formed on X100 steel in the solutions with pH=9.27 (a), pH=9.78 (b) and pH=10.84 (c)
Fig.5  Nyquist plots of the passive films formed at different potentials in the solutions containing Cl- of 0.001 molL-1 (a), 0.003 molL-1 (b) and 0.005 molL-1 (c)
pH Formation
potential / V
Rf×104
Ωcm2
[Cl-]
mol/L
Formation potential / V Rf×103
Ωcm2
Temperature
Formation potential / V Rf×104
Ωcm2
9.27 0.1 1.112 0.001 0.1 9.621 20 0.1 11.82
0.2 1.652 0.2 9.758 0.2 14.14
0.3 3.626 0.3 9.898 0.3 10.67
0.4 4.009 0.4 10.257 0.4 6.058
9.78 0.1 1.217 0.003 0.1 7.913 40 0.1 8.932
0.2 1.897 0.2 8.345 0.2 6.027
0.3 4.654 0.3 9.165 0.3 5.469
0.4 6.568 0.4 9.752 0.4 5.285
10.84 0.1 1.362 0.005 0.1 6.586 60 0.1 4.311
0.2 3.288 0.2 7.894 0.2 5.124
0.3 5.678 0.3 8.965 0.3 3.461
0.4 7.895 0.4 9.968 0.4 6.156
Table 3  Fitting results of the electrochemical impedance spectroscopies obtained under different conditions
Fig.6  Relationships between the thickness and formation potential of passive films at 20 ℃ (a), 40 ℃ (b) and 60 ℃ (c)
Experimental condition Fitting equation x =0.1
Temperature 20 ℃ y =1.8836x+0.4924 y =0.6808
40 ℃ y =1.9230x+0.3765 y =0.5688
60 ℃ y =1.7752x+0.3528 y =0.5303
pH 9.27 y =3.3452x+0.9599 y =1.2944
9.78 y =3.2542x+1.2753 y =1.6007
10.84 y =3.2473x+1.5822 y =1.9069
Cl- 0.001 y =1.338x+0.1403 y =0.2741
0.003 y =0.6380x+0.1302 y =0.1940
0.005 y =0.2870x+0.1276 y =0.1563
Table 4  Relationships between the thickness and formation potential of the passive films under different conditions
Fig.7  Mott-Schottky plots of the passive films formed on X100 steel at 20 ℃ (a), 40 ℃ (b) and 60 ℃ (c)
Formation potential / V 20 ℃ 40 ℃ 60 ℃
10-21 ND/cm-3 10-21 ND/cm-3 10-21 ND'/cm-3 10-21 (ND+ND')/cm-3 10-21 ND/cm-3 10-21 ND'/cm-3 10-21 (ND+ND')/cm-3
0.1 1.584 2.957 2.472 5.429 2.976 2.653 5.629
0.2 1.247 2.919 1.754 4.637 2.938 1.984 4.922
0.3 0.996 2.570 1.263 3.833 2.677 1.493 4.170
0.4 0.904 2.350 1.024 3.374 2.556 1.186 3.742
Table 5  Donor densities of the passive films formed at different temperatures
Fig.8  Mott-Schottky plots of the passive films formed on X100 steel in the solutions with pH=9.27 (a), pH=9.78 (b) and pH=10.84 (c)
Fig.9  Mott-Schottky plots of the passive films formed at different potentials in the solutions containing Cl- of 0.001 molL-1 (a), 0.003 molL-1 (b) and 0.005 molL-1 (c)
Temperature
Formation potential / V 10-21
(ND+ND')/cm-3
pH Formation potential / V 10-21
(ND+ND')/cm-3
[Cl-]
mol/L
Formation potential / V 10-21
(ND+ND')/cm-3
20 0.1 1.584 9.27 0.1 7.955 0.001 0.1 7.017
0.2 1.247 0.2 5.824 0.2 6.034
0.3 0.996 0.3 5.204 0.3 5.031
0.4 0.904 0.4 4.674 0.4 4.254
40 0.1 5.429 9.78 0.1 5.893 0.003 0.1 21.76
0.2 4.637 0.2 4.929 0.2 11.13
0.3 3.833 0.3 4.418 0.3 7.741
0.4 3.374 0.4 3.724 0.4 6.537
60 0.1 5.629 10.84 0.1 5.612 0.005 0.1 45.108
0.2 4.922 0.2 4.219 0.2 25.246
0.3 4.170 0.3 3.715 0.3 18.997
0.4 3.742 0.4 3.198 0.4 14.621
Table 6  Calculated donor densities of the passive films formed under different conditions
Environmental parameter Experimental condition D0 / 10-17cm2s-1
Temperature 20 ℃ 1.755×10-17
40 ℃ 3.264×10-17
60 ℃
5.147×10-17
pH 9.27 1.551×10-17
9.78 0.847×10-17
10.84 0.553×10-17
Cl- 0.001 mol/L 1.076×10-17
0.003 mol/L 1.906×10-17
0.005 mol/L 3.568×10-17
Table 7  Calculated diffusion coefficients of defects in the passive films under different conditions
[1] Zhuang C J, Feng Y R, Huo C Y, et a1. The development and its future research direction of grade X80 pipeline steel in China[J]. Welded Pipe Tube, 2005, 28(2): 10
(庄传晶, 冯耀荣, 霍春勇等. 国内X80级管线钢的发展及今后的研究方向[J]. 焊管, 2005, 28(2): 10)
[2] Cheng Y F, Luo J L. A comparison of the pitting susceptibility and semiconducting properties of the passive films on carbon steel in chromate and bicarbonate solutions[J]. Appl. Surf. Sci., 2000, 167(1/2): 113
[3] Zeng Y M, Luo J L. Electronic band structure of passive film oil X70 pipeline steel[J]. Electrochim. Acta, 2003, 48(23): 3551
[4] Jia Z J, Li X G, Liang P, et al. Electrochemical characterization of passive film formed under different potential condition on X70 pipeline steel in NaHCO3 solution [J]. J. Chin. Soc. Corros. Prot., 2010, 30(3): 241
(贾志军, 李晓刚, 梁平等. 成膜电位对X70管线钢在NaHCO3溶液中钝化膜电化学性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(3): 241)
[5] Mu L J, Zhao W Z. Influences of temperature, chloride ion and Cr on the semiconductor performance in the passive film on J55 oil casing steel[J]. J. Xi'an Shiyou Univ.(Nat. Sci.), 2010, 25(6): 76
(慕立俊, 赵文轸. 温度、Cl-和铬元素对J55油套管钢钝化膜半导体性能的影响[J]. 西安石油大学学报 (自然科学版), 2010, 25(6): 76)
[6] Sikora J, Sikora E, MacDonald D D. The eleetronic structure of the passive film on tungsten[J]. Electrochim. Acta, 2000, 45(12): 1875
[7] Gercasi C A, Folquer M E, Vallejo A E, et al. Electron transfer across anodic films formed on tin in carbonate-bicarbonate buffer solution[J]. Electrochim. Acta, 2005, 50(5): 1113
[8] Li W S, Luo J L. Uniformity of passive films formed on ferrite and mart ensite by different inorganic inhibitors[J]. Corros. Sci., 2002, 44(8): 1695
[9] Sun F L, Meng G Z, Zhang T, et a1. Electrochemical corrosion behavior of nickel coating with high densitynano-scale twins (NT) in solution with Cl−[J]. Electrochim. Acta, 2009, 54(5): 1578
[10] Gercasi C A, Folquer M E, Vallejo A E, et al. Electron transfer across anodic films formed on tin in carbonate-bicarbonate buffer solution[J]. Electrochim. Acta, 2005, 50(5): 1113
[11] Li D G, Feng Y R, Bai Z Q, et al. Influences of temperature, pH value and chloride ion on the diffusivity of point defect in the passive film on X80 pipeline steel[J]. Acta Chim. Sin., 2008, 66(10): 1151
(李党国, 冯耀荣, 白真权等. 温度、pH值和Cl-对X80钢钝化膜内点缺陷扩散系数的影响[J]. 化学学报, 2008, 66(10): 1151)
[12] Alves V, Brett C. Influence of alloying on the passive behaviour of steels in bicarbonate medium[J]. Corros. Sci., 2002, 44(9): 1949
[13] Ahn S J, Kwon H S. Effects of solution temperature on electronic properties of passive film formed on Fe in pH 8.5 borate buffer solution[J]. Electrochim. Acta, 2004, 49(20): 3347
[14] Pagitsas M, Diamantpoulou A, Sazou D. A point defect model for the general and pitting corrosion on iron oxide electrolyte interface deduced from current oscillations[J]. Chaos Soliton. Fractal., 2003, 17(2/3): 263
[15] Krishnamurthy B, White R E, Ploehn H J. Simplified point defect model for growth of anodic passive films on iron[J]. Electrochim. Acta, 2002, 47(20): 3375
[16] Cheng Y F, Yang C, Luo J L. Determination of the diffusivity of point defects in passive films on carbon steel[J]. Thin Solid Films, 2002, 416(1/2): 169
[1] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[2] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[3] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[4] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[5] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[6] Xiaofei CUI, Xiaoming TAN, De WANG, Ang QIAN. Assessment of Aging Performance of Polyurethane Coating for 7B04 Al-alloy with an Accelerated Testing Spectrum[J]. 中国腐蚀与防护学报, 2018, 38(1): 74-80.
[7] Jia WANG, Mengyang JIA, Zhaohui YANG, Bing HAN. On Completeness of EIS Equivalent Circuit Analysis for Electrochemical Corrosion Process[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[8] Guangyi CAI,Haowei WANG,Weihang ZHAO,Zehua DONG. Effect of Nano-CeO2 on Anticorrosion Performance for Polyurethane Coating[J]. 中国腐蚀与防护学报, 2017, 37(5): 411-420.
[9] Juan ZHANG,Ziqiang LIU,Tao FENG,Shifeng WEN,Ruiqing CHEN. Effect of Carbon Nanotube on Properties of Epoxy Coating[J]. 中国腐蚀与防护学报, 2017, 37(3): 254-260.
[10] Shuangqing SUN,Qifei ZHENG,Chunling LI,Xiumin WANG,Songqing HU. Effect of Corrosion Products on Long-term Atmospheric Corrosion of Pure Aluminum 8A06[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[11] Weihang MIAO,Wenbin HU,Zhiming GAO,Xiangang KONG,Ru ZHAO,Junwu TANG. Corrosion Behavior of 304SS in Simulated Pore Solution of Concrete for Use in Marine Environment[J]. 中国腐蚀与防护学报, 2016, 36(6): 543-548.
[12] Yongsheng HAO,Abdullahi SANI Luqman,Lixin SONG,Guobao XU,Tiejun GE,Qinghong FANG. Corrosion Inhibition Effect of Phytic Acid Conversion Coating Formed on Q235 Carbon Steel in Acidic and Neutral Solutions[J]. 中国腐蚀与防护学报, 2016, 36(6): 549-558.
[13] Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[14] Siqi WANG,Liwei ZHU,Fuchun LIU,En-Hou HAN,Zhenyu WANG,Zhouhai QIAN. Effect of Phosphoric Acid on Corrosion Performance of Vinyl Chloride-acrylic Copolymer Coating on Rust Steel[J]. 中国腐蚀与防护学报, 2016, 36(3): 281-286.
[15] Min ZHENG,Qichao ZHANG,Yanliang HUANG,Dongzhu LU,Xiuming YU,Yuemiao LIU. Determination of Representative Ground-water for Corrosion Assessment of Candidate Materials Used in Beishan Area Preselected for High-level Radioactive Waste Disposal Repository[J]. 中国腐蚀与防护学报, 2016, 36(2): 185-190.
No Suggested Reading articles found!