Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (2): 106-112    DOI: 10.11902/1005.4537.2014.035
Current Issue | Archive | Adv Search |
Electrochemical Corrosion and Critical Pitting Temperature of S32750 Super Duplex Stainless Steel in NaCl Solution
HE Jin1,2, YAN Minsheng1,2, YANG Lijing2, Masoumeh Moradi2, SONG Zhenlun2, JIANG Yehua1()
1. School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2. Key Laboratory of Marine New Materials and Related Technology, Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Download:  HTML  PDF(2597KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The electrochemical corrosion behavior and critical pitting temperature (CPT) of S32750<br>super duplex stainless steel in 3.5%NaCl solution were investigated by electrochemical techniques. The morphologies of the steel before after pitting corrosion were observed by scanning electron microscope. The CPT of the S32750 steel was identified as 71 ℃. A passive film could form on the steel surface when the solution temperature was below the CPT. While, when the solution temperature was above the CPT, pitting corrosion occurred on the steel surface as the result of the breakdown of the passive film due to the increase of the Cl- activity. Pitting corrosion became more serious with the increasing temperature. Moreover, the corrosion models of the steel below and above the CPT were sketched respectively.

Key words:  duplex stainless steel      critical pitting temperature      passivation      corrosion     
Received:  12 March 2014     
ZTFLH:  TG171  

Cite this article: 

HE Jin, YAN Minsheng, YANG Lijing, Masoumeh Moradi, SONG Zhenlun, JIANG Yehua. Electrochemical Corrosion and Critical Pitting Temperature of S32750 Super Duplex Stainless Steel in NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2015, 35(2): 106-112.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.035     OR     https://www.jcscp.org/EN/Y2015/V35/I2/106

Fig.1  Microstructure of duplex stainless steel S32750
Fig.2  Potentiodynamic polarization curves of duplex stainless steel S32750 in 3.5%NaCl solution
Fig.3  Curves of corrosion current density and polarization resistance (a) and breakdown resistance of the passive film (b) vs temperature, respectively
Fig.4  Current density of duplex stainless steel S32750 vs temperature at 0.6 V (vs SCE)
Fig.5  EIS results of duplex stainless steel S32750 at different temperatures in NaCl solution at applied bias voltage of 0.6 V (vs SCE)
Fig.6  Equivalent circuits of the corrosion process of duplex stainless steel S32750 at below (a) and above (b) CPT
Fig.7  Variation of the charge transfer resistance with temperature for the passive film
Temperature / ℃ Rs / Ωcm2 Qpass / Ω-1sncm2 Qpass / n1 Rpass / Ωcm2 Qpit / Ω-1sncm2 Qpit / n2 Rpit / Ωcm2
25 3.58 6.16×10-5 0.82 2.50×103 --- --- ——
35 2.10 8.23×10-5 0.77 2.06×103 --- --- ——
45 2.24 8.88×10-5 0.74 1.99×103 --- --- ——
55 1.73 9.59×10-5 0.66 1.97×103 --- --- ——
65 1.38 1.06×10-4 0.68 1.94×103 --- --- ——
75 2.26 3.92×10-5 0.81 1.24×102 7.03×10-5 0.75 131.50
85 1.88 9.99×10-5 0.80 2.46×101 1.88×10-4 0.71 15.28
Table 1  Equivalent parameters obtained by fitting the EIS
Fig.8  Relationship between DC-removal noise and temperature
Fig.9  SEM images of duplex stainless steel S32750 before corrosion (a) and after corrosion at 65 ℃ (b), 75 ℃ (c) and 85 ℃ (d) in NaCl solution at applied bias voltage of 0.6 V (vs SCE)
Fig.10  Relationship diagram between anode polarization current density and temperature under passivation potential of 0.6 V (vs SCE)
Fig.11  Passivation and pitting corrosion model of duplex stainless steel S32750 below (a) and

above (b) CPT

[1] Wu J. Duplex Stainless Steel[M]. Bejing: Metallurgical Industry Press, 1999
(吴玖. 双相不锈钢[M]. 北京: 冶金工业出版社, 1999)
[2] Brigham R, Tozer E. Temperature as a pitting criterion[J]. Corrosion, 1973, 29: 33
[3] Brigham R, Tozer E. Effect of alloying additions on the pitting resistance of 18%Cr austenitic stainless steel[J]. Corrosion, 1974, 30: 161
[4] Weng Y J. Corrosion properties of stainless steel and the influence of metallurgical factors[J]. Corros. Sci. Prot. Technol., 1989, 1(3): 8
(翁永基. 不锈钢的腐蚀特性及冶金因素的影响[J]. 腐蚀科学与防护技术, 1989, 1(3): 8)
[5] Nilsson J O. Super duplex stainless steels[J]. Mater. Sci. Technol., 1992, 8(8): 685
[6] Lorenz K, Medawar G. Corrosion of austenitic chromium-nickel steels with and without nitrogen additions and their resistance to chloride solutions[J]. Thyssen Forschung, 1969, 1(3): 97
[7] Zhang H W, Wang K. The influence of environmental factors on the pitting potential of stainless steel[J]. J. Beijing Univ. Iron Steel Technol., 1985, 3: 104
(张蕙文, 王旷. 环境因素对不锈钢点蚀电位的影响[J]. 北京钢铁学院学报, 1985, 3: 104)
[8] Liang M H, Zhao G X, Feng Y R, et al. Criticial pitting temperature of 22Cr duplex stainless steel[J]. Corros. Sci. Prot. Technol., 2005, 17(6): 392
(梁明华, 赵国仙, 冯耀荣等. 22Cr双相不锈钢的临界点蚀温度研究[J]. 腐蚀科学与防护技术, 2005, 17(6): 392)
[9] Ovarfort R. New electrochemical cell for pitting corrosion testing[J]. Corros. Sci., 1988, 28: 135
[10] Qvarfort R. Critical pitting temperature measurements of stainless steels with an improved electrochemical method[J]. Corros. Sci., 1989, 29: 987
[11] Salinas-Bravo V M, Newman R C. An alternative method to determine criticalpitting temperature of stainless steels in ferric chloride solution[J]. Corros. Sci., 1994, 36: 67
[12] Moayed M H, Newman R C. Evolution of current transients and morphology of metastable and stable pitting on stainless steel near the critical pitting temperature[J]. Corros. Sci., 2006, 48(4): 1004
[13] ASTM G150-99. Standard test method for electrochemical critical pitting temperature testing of stainless steels[S]
[14] Cao C N, Chang X Y, Lin H C. Features of electrochemical noises during pitting corrosion[J]. J. Chin. Soc. Corros. Prot., 1989, 9(1): 21
(曹楚南, 常晓元, 林海潮. 孔蚀过程中的电化学噪声特征[J]. 中国腐蚀与防护学报, 1989, 9(1): 21)
[15] Hu H L, Li N, Cheng J N. A review on progress of application of electrochemical noise in corrosion study[J]. Corros. Sci. Prot. Technol., 2007, 19(2): 114
(胡会利, 李宁, 程瑾宁. 电化学噪声在腐蚀领域中的研究进展[J]. 腐蚀科学与防护技术, 2007, 19(2): 114)
[16] Qiu Y B, Huang J Y, Guo X P. Trend removal in the analysis of electrochemical noise by polynomial fitting[J]. J. Huazhong Univ. Sci. Technol.(Nat. Sci.), 2005, 33(10): 39
(邱于兵, 黄家怿, 郭兴蓬. 多项式拟合法消除电化学噪声的直流漂移[J]. 华中科技大学学报 (自然科学版), 2005, 33(10): 39)
[17] Streicher M A. Pitting corrosion of 18Cr-8Ni stainless steel[J]. J. Electrochem. Soc., 1956, 103(7): 375
[1] LI Chengyuan, CHEN Xu, HE Chuan, LI Hongjin, PAN Xin. Alternating Current Induced Corrosion of Buried Metal Pipeline: A Review[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[2] MING Nanxi, WANG Qishan, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Temperature on Corrosion Behavior of X70 Steel in an Artificial CO2-containing Formation Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[3] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[4] QIAO Jisen, XIA Zonghui, LIU Libo, XU Jiamin, LIU Xudong. Corrosion Resistance of Aluminum-magnesium Bimetal Composite Material Prepared by Isothermal Indirect Extrusion[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[5] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[6] GE Pengli, ZENG Wenguang, XIAO Wenwen, GAO Duolong, ZHANG Jiangjiang, LI Fang. Effect of Applied Stress and Medium Flow on Corrosion Behavior of Carbon Steel in H2S/CO2 Coexisting Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[7] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[8] ZHANG Yifan, YUAN Xiaoguang, HUANG Hongjun, ZUO Xiaojiao, CHENG Yulin. Corrosion Behavior of Cu-Al Laminated Board in Neutral Salt Fog Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[9] JIANG Bochen, CAO Jiangdong, CAO Xueyu, WANG Jiantao, ZHANG Shaopeng. Hot Corrosion Behavior of Gd2(Zr1-xCex)2O7 Thermal Barrier Coating Ceramics Exposed to Artificial Particulates of CMAS[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[10] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[11] LUAN Hao, MENG Fandi, LIU Li, CUI Yu, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Preparation and Anticorrosion Performance of M-phenylenediamine-graphene Oxide/Organic Coating[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[12] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[13] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[14] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[15] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
No Suggested Reading articles found!