Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2013, Vol. 33 Issue (3): 199-204    DOI:
Current Issue | Archive | Adv Search |
Corrosion Behavior of Q235 Steel in Beijing
Soil Environment
ZHU Min, DU Cuiwei, LI Xiaogang, LIU Zhiyong, YAO Wentao, HUANG Liang
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Download:  PDF(4862KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The corrosion behavior of the Q235 carbon steel in Beijing soil environment was investigated by burying test in nature field for one year, two years and two point five years, electrochemical impedance spectroscopy(EIS) test, morphology observations, and weight-loss method. The results showed that the general corrosion occurred mainly on the Q235 carbon steel in Beijing soil, but the serious pitting corrosion was observed locally. With the increase of burying time, the average depth of pitting and the deepest depth of pitting both increased, while the corrosion rate increased first and then decreased. The corrosion product of the Q235 carbon steel mainly consisted of α-FeOOH, β-FeOOH, γ-FeOOH, and γ-Fe2O3. With the increase of burying time, the content of α-FeOOH increased, meanwhile the compactness and continuity of the corrosion product layer improved, but it could not protect the substrate.
Key words:  key words: Q235 steel      Beijing soil      EIS      corrosion behavior     
ZTFLH:  TG172.4  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

ZHU Min,DU Cuiwei,LI Xiaogang,LIU Zhiyong,YAO Wentao,HUANG Liang. Corrosion Behavior of Q235 Steel in Beijing
Soil Environment. Journal of Chinese Society for Corrosion and protection, 2013, 33(3): 199-204.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2013/V33/I3/199

[1] Meng X L. A study of corrosion of mild steel in soil [J]. J. Chin. Soc. Corros. Prot., 1997, 17(4): 291-294
(孟厦兰. 苏打盐土中低碳钢的自然腐蚀规律 [J]. 中国腐蚀与防护学报, 1997, 17(4): 291-294)
[2] Li M C, Lin H C, Cao C N. Study on soil corrosion of carbon steel by electrochemical impedance spectroscopy(EIS) [J]. J. Chin. Soc. Corros. Prot., 2000, 20(2): 111-117
(李谋成, 林海潮, 曹楚南. 碳钢在土壤中腐蚀的电化学阻抗谱特征 [J]. 中国腐蚀与防护学报, 2000, 20(2): 111-117)
[3] Lorenz W J, Mansfeld F. Determination of corrosion rates by electrochemical DC and AC methods [J]. Corros. Sci., 1981, 21(9): 647-672
[4] Murray J N, Moran P J. Influence of moisture on corrosion of pipeline steel in soil using in-situ impedance spectroscopy [J]. Corrosion, 1989, 45(1): 34-42
[5] GB/T 16545-1996 Removal of corrosion products from corrosion test specimens of metals and alloys [S]. Beijing: National Quality Supervision, 1996
(GB/T16545-1996 金属和合金的腐蚀试样上腐蚀产物的清除 [S]. 北京: 国家技术监督局, 1996)
[6] Li X G, Du C W, Dong C F, et al. Corrosion Behavior and Test of X70 Pipeline Steel [M]. Beijing: Science Press, 2006
(李晓刚, 杜翠薇, 董超芳等. X70钢的腐蚀行为与试验研究 [M]. 北京: 科学出版社, 2006)
[7] Nie X H, Li Y L, Li J K, et al. Morphology, products and corrosion mechanism analysis of Q235 carbon steel in sea-shore salty soil [J]. J. Mater. Eng., 2010, (8): 24-28
(聂向晖, 李云龙, 李记科等. Q235碳钢在滨海盐土中的腐蚀形貌、产物及机理分析 [J]. 材料工程, 2010, (8): 24-28)
[8] Chen C F, Lu M X, Zhao G X, et al. Electrochemical characteristics of CO2 corrosion of well tube steels with corrosion scales [J]. J.Chin. Soc. Corros. Prot., 2003, 23(3): 139-143
(陈长风, 路民旭, 赵国仙等. 腐蚀产物膜覆盖条件下油套管钢CO2腐蚀电化学特征 [J]. 中国腐蚀与防护学报, 2003, 23(3): 139-143)
[9] Mizoguchi T, Ishii Y, Okada T, et al. Magnetic property based characterization of rust on weathering steels [J]. Corros. Sci., 2005, 47(10): 2477-2497
[10] Mi F Y, Wang X D, Wang B, et al. Influence of microstructure on the corrosion resistance for low carbon steel [J]. J. Chin. Soc. Corros. Prot., 2010, 30(5): 391-395
(米丰毅, 王向东, 汪兵等. 显微组织对低碳钢耐蚀性的影响 [J]. 中国腐蚀与防护学报, 2010, 30(5): 391-395)
[1] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[2] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[3] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[4] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[5] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[6] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[7] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[8] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[9] WANG Qinying,PEI Rui,XI Yuchen. Erosion-corrosion Behavior of Laser-clad Ni-based Alloy Coating on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[10] GUO Tieming,ZHANG Yanwen,QIN Junshan,SONG Zhitao,DONG Jianjun. Corrosion Behavior of Q345q Bridge Steel in Three Simulated Atmospheres[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[11] Bobo HUANG,Ping LIU,Xinkuan LIU,Pinxiu MEI,Xiaohong CHEN. Seawater Corrosion Behavior of New 70-1 Tin Brass Net in Waters off Dachen Island for Two Years[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[12] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[13] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[14] Xiaofei CUI, Xiaoming TAN, De WANG, Ang QIAN. Assessment of Aging Performance of Polyurethane Coating for 7B04 Al-alloy with an Accelerated Testing Spectrum[J]. 中国腐蚀与防护学报, 2018, 38(1): 74-80.
[15] Jia WANG, Mengyang JIA, Zhaohui YANG, Bing HAN. On Completeness of EIS Equivalent Circuit Analysis for Electrochemical Corrosion Process[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
No Suggested Reading articles found!