Please wait a minute...
J Chin Soc Corr Pro  2012, Vol. 32 Issue (3): 210-216    DOI:
Current Issue | Archive | Adv Search |
ELECTROCHEMICAL CORROSION BEHAVIOR OF 17-4PH STAINLESS STEEL WITH LASER SURFACE MELTING TREATMENT
LI Zhong1,2, ZHANG Junwei1, MENG Guozhe2, SUN Feilong2, SHAO Yawei2, ZHANG Tao2
1. School of Material and Metallurgy, University of Science and Technology Liaoning, Anshan 114051
2. School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001
Download:  PDF(2711KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effects of laser parameters at a constant laser power (1600W) on the corrosion behavior of 17-4PH stainless steel were investigated in 3.5% NaCl solution by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) technique, combined with optical microscopy and scanning electron microscopy (SEM) observation. The results showed that sample A, which was treated by laser surface melting process with light-absorption X and scanning speed of 6 mm/s, possessed the highest corrosion resistance. The results also demonstrated that the homogeneous microstructure was obtained only when the light-absorption and the scanning speed matched well (such as the light-absorption X and scanning speed 6 mm/s), leading the enhancement of the corrosion resistance; otherwise the heterogeneous would be obtained (such as the light-alsorlant Y and scanning speed 6 mm/s), leading to the degradation of the corrosion resistance and the material would suffer serious pitting corrosion when it was used in the corrosive environment.
Key words:  17-4PH stainless steel      laser surface treatment      EIS     
Received:  08 April 2011     
ZTFLH: 

TG172

 
Corresponding Authors:  MENG Guozhe     E-mail:  mengguozhe@hrbeu.edu.cn

Cite this article: 

LI Zhong, ZHANG Junwei, MENG Guozhe, SUN Feilong, SHAO Yawei, ZHANG Tao. ELECTROCHEMICAL CORROSION BEHAVIOR OF 17-4PH STAINLESS STEEL WITH LASER SURFACE MELTING TREATMENT. J Chin Soc Corr Pro, 2012, 32(3): 210-216.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I3/210

[1] Ho J S, Young T Y. Microstructural and hardness investigation of hot-work tool steels by laser surface treatment[J].J. Mater. Process. Technol., 2008, 201(1-3): 342-347
[2] Iordanova I, Antonov V. Surface oxidation of low carbon steel during laser treatment, its dependence on the initial microstructure and influence on the laser energy absorption[J]. Thin Solid Films, 2008, 516(21): 7475-7481
[3] Verezub O, Kalazi Z, Buza G, et al. In-situ synthesis of a carbide reinforced steel matrix surface nanocomposite by laser melt injection technology and subsequent heat treatment[J]. Surf.Coat. Technol., 2009, 203(20-21):3049-3057
[4] Wang J. Study on the Properties of a 17-4PH Stainless Steel Used in a Nuclear Reactor [D]. Chengdu: Sichuan University,2007
    (王均. 核反应堆用17-4PH不锈钢的性能研究[D], 成都:四川大学, 2007)
[5] Huang G L. Study on the structure and performance of 17-4PH stainless steel [J]. Iron Steel, 1998, 33(4): 44-46
    (黄根良. 17-4PH沉淀硬化不锈钢的组织和性能研究[J]. 钢铁, 1998, 33(4):44-46)
[6] Kochmanski P, Nowacki J.Activated gas nitriding of 17-4PH stainless steel [J].Surf. Coat. Technol., 2006, 200(22-23):6558-6562
[7] Sun Y, Bell T.Low temperature plasma nitriding characteristics of precipitation hardening stainless steel[J].Surf. Eng.,2003, 19(5): 331-336
[8] Li G J, Wang J, Li C, Peng Q, et al.Microstructure and dry-sliding wear properties of DC plasma nitrided 17-4PH stainless steel [J]. Nucl. Instrum. Methods Phys. Res., 2008, 266B(9):1964-1970
[9] Qi F, Leng Y X, Huang N, et al.Surface modification of 17-4PH stainless steel by DC plasma nitriding and titanium nitride film duplex treatment [J]. Nucl. Instrum. Methods Phys. Res., Sect., 2007, 257(1-2)B: 416-419
[10] Esfandiari M, Dong H.The corrosion and corrosion-wear behaviour of plasma nitrided 17-4PH precipitation hardening stainless steel [J].Surf. Coat. Technol., 2007, 202(3): 466-478
[11] Zhang Y K, Zhou J Z, Ye Y X. Laser Processing Technique [M]. Beijing: Chemistry Industry Press, 2004
     (张永康,周建忠, 叶云霞. 激光加工技术[M]. 北京: 化学工业出版社, 2004)
[12] Si S H, Yuan X M, Xu K, et al. Effect of laser power on microstructures and wear properties of  WCp/Ni metal ceramics coating [J]. J. Chin. Soc. Corros. Prot., 2004, 24(3): 183-187
     (斯松华, 袁晓敏, 徐锟等.激光功率对激光熔覆WCP/Ni基金属陶瓷涂层的组织与磨损性能的影响[J].中国腐蚀与防护学报, 2004, 24(3): 183-187)
[13] Yao J H, Wang L, Zhang Q L, et al.Surface laser alloying of 17-4PH stainless steel steam turbine blades [J]. Opt. Laser Technol., 2008, 40(6): 838-843
[14] Yao J H, Lai H M. The technology of laser strengthening on turbine last stage blade [J]. Thermal Turbine, 2006, 35(1): 58-61
     (姚建华, 赖海明. 汽轮机末级叶片的激光强化技术[J]. 热力透平. 2006,35(1): 58-61)
[15] Davenport A J, Tareelap N, Padovani C, et al. Corrosion Protection of Aerospace Aluminum Alloys with Laser Surface Melting [A]. 208th Meeting of The Electrochemical Society [C]. Los Angeles:2005: 551
[16] Galun R, Weisheit Z, Mordike B L. Improving the surface properties of magnesium by laser alloying [J]. Corros. Rev., 1998,16(1-2): 53-74
[17] Mordike B L, Kainer K U. Magnesium alloys and their applications [M]. Werkstoff information-gesellschaft mbh: Wiley-VCH,1998
[18] Subramanian R, Sircar S, Mazumder J. Laser cladding of zirconium on magnesium for improved corrosion properties [J]. J.Mater. Sci., 1991, 26(4): 951-956
[19] Mondal A K, Kumar S, Blawert C, et al. Laser surface cladding of Fe-B-C, Fe-B-Si and Fe-BC-Si-Al-C on plain carbon steel [J]. Surf. Coat. Technol., 2008, 202 (14): 3187-3198
[20] Kwok C T, Lo K H, Cheng F T, et al. Effect of processing conditions on the corrosion performance of laser surface-melted AISI 440C martensitic stainless steel [J]. Surf. Coat. Technol., 2003,166: 221-230
[21] Meng G Z, Li Y, Wang F H. The corrosion behavior of nanocrystalline Fe-10Cr [J]. Electrochim. Acta, 2006, 51: 4277-4284
[22] Meng G Z, Li Y, Wang F H. Corrosion behavior of Fe-10Cr nanocrystalline coatings. (I) The passive behavior of Fe-10Cr nanocrystalline coatings in acidic solution [J]. J. Chin. Soc.Corros. Prot., 2007, 27(1): 35-42
     (孟国哲, 李瑛, 王福会.纳米Fe-10Cr涂层电化学腐蚀行为影响研究. I钝化性能[J].中国腐蚀与防护学报, 2007, 27(1): 35-42)
[23] Meng G Z, Li Y, Wang F H. Corrosion behavior of Fe-10Cr nanocrystalline coatings. (II) Corrosion behavior of Fe-10Cr nanocrystalline coatings in acidic solution with Cl- [J]. J.Chin. Soc. Corros. Prot., 2007, 27(1): 43-47
     (孟国哲, 李瑛,王福会. 纳米Fe-10Cr涂层电化学腐蚀行为影响研究. II点蚀性能[J].中国腐蚀与防护学报, 2007, 27(1): 43-47)
[24] Cao C N. On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady-state-I. One state variable besides electrode potential [J],Electrochim. Acta, 1990, 35: 831-836
[25] Cao C N. On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady-state-II. Two state variables besides electrode potential [J], Electrochim. Acta, 1990, 35: 837-844
[1] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[2] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[3] Xiaofei CUI, Xiaoming TAN, De WANG, Ang QIAN. Assessment of Aging Performance of Polyurethane Coating for 7B04 Al-alloy with an Accelerated Testing Spectrum[J]. 中国腐蚀与防护学报, 2018, 38(1): 74-80.
[4] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[5] Jia WANG, Mengyang JIA, Zhaohui YANG, Bing HAN. On Completeness of EIS Equivalent Circuit Analysis for Electrochemical Corrosion Process[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[6] Guangyi CAI,Haowei WANG,Weihang ZHAO,Zehua DONG. Effect of Nano-CeO2 on Anticorrosion Performance for Polyurethane Coating[J]. 中国腐蚀与防护学报, 2017, 37(5): 411-420.
[7] Juan ZHANG,Ziqiang LIU,Tao FENG,Shifeng WEN,Ruiqing CHEN. Effect of Carbon Nanotube on Properties of Epoxy Coating[J]. 中国腐蚀与防护学报, 2017, 37(3): 254-260.
[8] Shuangqing SUN,Qifei ZHENG,Chunling LI,Xiumin WANG,Songqing HU. Effect of Corrosion Products on Long-term Atmospheric Corrosion of Pure Aluminum 8A06[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[9] Weihang MIAO,Wenbin HU,Zhiming GAO,Xiangang KONG,Ru ZHAO,Junwu TANG. Corrosion Behavior of 304SS in Simulated Pore Solution of Concrete for Use in Marine Environment[J]. 中国腐蚀与防护学报, 2016, 36(6): 543-548.
[10] Yongsheng HAO,Abdullahi SANI Luqman,Lixin SONG,Guobao XU,Tiejun GE,Qinghong FANG. Corrosion Inhibition Effect of Phytic Acid Conversion Coating Formed on Q235 Carbon Steel in Acidic and Neutral Solutions[J]. 中国腐蚀与防护学报, 2016, 36(6): 549-558.
[11] Siqi WANG,Liwei ZHU,Fuchun LIU,En-Hou HAN,Zhenyu WANG,Zhouhai QIAN. Effect of Phosphoric Acid on Corrosion Performance of Vinyl Chloride-acrylic Copolymer Coating on Rust Steel[J]. 中国腐蚀与防护学报, 2016, 36(3): 281-286.
[12] Min ZHENG,Qichao ZHANG,Yanliang HUANG,Dongzhu LU,Xiuming YU,Yuemiao LIU. Determination of Representative Ground-water for Corrosion Assessment of Candidate Materials Used in Beishan Area Preselected for High-level Radioactive Waste Disposal Repository[J]. 中国腐蚀与防护学报, 2016, 36(2): 185-190.
[13] Yanjie LIU,Zhenyao WANG,Wei KE. Characterization of Corrosion Products on Pure Al Exposed in Atmospheres at Typical Rural, Industrial and Coastal Areas in China[J]. 中国腐蚀与防护学报, 2016, 36(1): 47-51.
[14] Ran XU,Jia WANG. Application of Local Electrochemical Impedance Technique in Corrosion Research[J]. 中国腐蚀与防护学报, 2015, 35(4): 287-296.
[15] Ning ZHANG,Huyuan SUN,Lijuan SUN,Shuan LIU. Electrochemical Corrosion Behavior of X80 Pipeline Steel in a Simulated Soil Solution for Coastal Tidal Flat Wetland[J]. 中国腐蚀与防护学报, 2015, 35(4): 339-344.
No Suggested Reading articles found!