|
|
Application of Local Electrochemical Impedance Technique in Corrosion Research |
Ran XU,Jia WANG( ) |
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China |
|
|
Abstract Local electrochemical impedance spectroscopy (LEIS) technique is a novel method for the study of local corrosion, which is based on the assumption that the local impedance can be generated by measuring the AC-local-current density in the vicinity of the working electrode in a usual three-electrode cell configuration. From a practical point of view, this was achieved with the use of a dual microelectrode for sensing the local AC-potential gradient, the local current being obtained from the direct application of the Ohm's law. In this paper, the history and principles of this technique were reviewed, while the applications in the field of corrosion research and the characteristics of this method were also discussed.
|
|
[1] | Annergren I, Thierry D, Zou F. Localized electrochemical impedance spectroscopy for studying pitting corrosion on stainless steels[J]. J. Electrochem. Soc., 1997, 144(4): 1208 | [2] | Gabrielli C, Huet F,?Keddam M, et al. A review of the probabilistic aspects of localized corrosion[J]. Corrosion, 1990, 46(4): 266 | [3] | Wightman R M. Microvoltammetric electrodes[J]. Anal. Chem., 1981, 53(9): 1125A | [4] | Sun P, Laforge F O, Mirkin M V. Scanning electrochemical microscopy in the 21st century[J]. Phys. Chem. Chem. Phys., 2007, 9(7): 802 | [5] | Isaacs H S, Kissel G. Surface preparation and pit propagation in stainless steels[J]. J. Electrochem. Soc., 1972, 119(12): 1628 | [6] | Bayet E, Huet F, Keddam M, et al. A novel way of measuring local electrochemical impedance using a single vibrating probe[J]. J. Electrochem. Soc., 1997, 144(4): L87 | [7] | Bayet E, Huet F, Keddam M, et al. Local electrochemical impedance measurement: scanning vibrating electrode technique in AC mode[J]. Electrochim. Acta, 1999, 44(24): 4117 | [8] | Gabrielli C, Joiret S, Keddam M, et al. Development of a coupled SECM-EQCM technique for the study of pitting corrosion on iron[J]. J. Electrochem. Soc., 2006, 153(3): B68 | [9] | Davoodi A, Pan J, Leygraf C, et al. Probing of local dissolution of Al-alloys in chloride solutions by AFM and SECM[J]. Appl. Surf. Sci., 2006, 252(15): 5499 | [10] | Isaacs H S, Kendig M W. Determination of surface inhomogeneities using a scanning probe impedance technique[J]. Corrosion, 1980, 36(6): 269 | [11] | Schreiber A, Schultze J W, Lohrengel M M, et al. Grain dependent electrochemical investigations on pure iron in acetate buffer pH 6.0[J]. Electrochim. Acta, 2006, 51(13): 2625 | [12] | Taylor S R. Incentives for using local electrochemical impedance methods in the investigation of organic coatings[J]. Prog. Org. Coat., 2001, 43(1-3): 141 | [13] | Tang X, Cheng Y F. Quantitative characterization by micro-electrochemical measurements of the synergism of hydrogen, stress and dissolution on near-neutral pH stress corrosion cracking of pipelines[J]. Corros. Sci., 2011, 53(9): 2927 | [14] | Mouanga M, Puiggali M, Tribollet B, et al. Galvanic corrosion between zinc and carbon steel investigated by local electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2013, 88: 6 | [15] | Jorcin J, Aragon E, Merlatti C E L, et al. Delaminated areas beneath organic coating: A local electrochemical impedance approach[J]. Corros. Sci., 2006, 48(7): 1779 | [16] | Zhang N, Sun Z H, Zhang Q, et al. Application of local electrochemical impedance spectroscopy (LEIS) on assessing the environmental failure of organic coatings[J]. Equip. Environ. Eng., 2007, 4(1): 75 (章妮, 孙志华, 张琦等.局部阻抗测试技术在评定有机涂层环境失效中的应用[J]. 装备环境工程, 2007, 4(1): 75) | [17] | Lillard R S, Moran P J, Isaacs H S. A novel method for generating quantitative local electrochemical impedance spectroscopy[J]. J. Electrochem. Soc., 1992, 139(4): 1007 | [18] | Zou F, Thierry D, Isaacs H S. A High-resolution probe for localized electrochemical impedance spectroscopy measurements[J]. J. Electrochem. Soc., 1997, 144(6): 1957 | [19] | Frateur I, Huang V M, Orazem M E, et al. Experimental issues associated with measurement of local electrochemical impedance[J]. J. Electrochem. Soc., 2007, 154(12): C719 | [20] | Frateur I, Huang V M, Orazem M E, et al. Local electrochemical impedance spectroscopy: Considerations about the cell geometry[J]. Electrochim. Acta, 2008, 53(25): 7386 | [21] | Wu S, Orazem M E, Tribollet B, et al. Impedance of a disk electrode with reactions involving an adsorbed intermediate: Local and global analysis[J]. J. Electrochem. Soc., 2009, 156(1): C28 | [22] | Wu S, Orazem M E, Tribollet B, et al. Impedance of a disk electrode with reactions involving an adsorbed intermediate: experimental and simulation analysis[J]. J. Electrochem. Soc., 2009, 156(7): C214 | [23] | Ferrari J V, de Melo H I L G, Keddam M, et al. Influence of normal and radial contributions of local current density on local electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2012, 60: 244 | [24] | Sánchez M, Aouina N, Rose D, et al. Assessment of the electrochemical microcell geometry by local electrochemical impedance spectroscopy of copper corrosion[J]. Electrochim. Acta, 2012, 62: 276 | [25] | Pilaski M, Hamelmann T, Moehring A, et al. Impedance spectroscopy in micro systems[J]. Electrochim. Acta, 2002, 47(13): 2127 | [26] | Krawiec H, Vignal V, Oltra R. Use of the electrochemical microcell technique and the SVET for monitoring pitting corrosion at MnS inclusions[J]. Electrochem. Commun., 2004, 6(7): 655 | [27] | Bayet E, Huet F, Keddam M, et al.Adaptation of the scanning vibrating electrode technique to AC mode: Local electrochemical impedance measurement[J]. Mater. Sci. Forum, 1998, 57: 289 | [28] | Wittmann M W, Leggat R B, Taylor S R. The detection and mapping of defects in organic coatings using local electrochemical impedance methods[J].?J. Electrochem. Soc., 1999, 146(11): 4071 | [29] | Huang V M, Vivier V, Orazem M E, et al. The apparent constant-phase-element behavior of a disk electrode with faradaic reactions a global and local impedance analysis[J]. J. Electrochem. Soc., 2007, 154(2): C99 | [30] | Huang V M, Vivier V, Orazem M E, et al. The apparent constant-phase-element behavior of an ideally polarized blocking electrode a global and local impedance analysis[J]. J. Electrochem. Soc., 2007, 154(2): C81 | [31] | Huang V M, Vivier V, Frateur I, et al. The global and local impedance response of a blocking disk electrode with local constant-phase-element behavior[J]. J. Electrochem. Soc., 2007, 154(2): C89 | [32] | Schneider I A, Kuhn H, Wokaun A, et al. Study of water balance in a polymer electrolyte fuel cell by locally resolved impedance spectroscopy[J]. J. Electrochem. Soc., 2005, 152(12): A2383 | [33] | Schneider I A, Kramer D, Wokaun A, et al. Spatially resolved characterization of PEFCs using simultaneously neutron radiography and locally resolved impedance spectroscopy[J]. Electrochem. Commun., 2005, 7(12): 1393 | [34] | Bandarenka A S, Eckhard K, Maljusch A, et al. Localized electrochemical impedance spectroscopy: visualization of spatial distributions of the key parameters describing solid/liquid interfaces[J]. Anal. Chem., 2013, 85(4): 2443 | [35] | Montoya R, García-Galván F R, Jiménez-Morales A, et al. Effect of conductivity and frequency on detection of heterogeneities in solid/liquid interfaces using local electrochemical impedance: Theoretical and experimental study[J]. Electrochem. Commun., 2012, 15(1): 5 | [36] | Xiao K, Zhang X, Dong C, et al. Localized electrochemical impedance spectroscopy study on the corrosion behavior of Fe-Cr alloy in the solution with Cl- and SO42-[J]. J. Wuhan Univ. Technol. Mater., 2012, 27(1): 27 | [37] | Jorcin J, Orazem M E, Pébère N, et al. CPE analysis by local electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2006, 51(8): 1473 | [38] | Galicia G, Pébère N, Tribollet B, et al. Local and global electrochemical impedances applied to the corrosion behaviour of an AZ91 magnesium alloy[J]. Corros. Sci., 2009, 51(8): 1789 | [39] | Jin T Y, Cheng Y F. In-situ characterization by localized electrochemical impedance spectroscopy of the electrochemical activity of microscopic inclusions in an X100 steel[J]. Corros. Sci., 2011, 53(2): 850 | [40] | Meng G Z, Zhang C, Cheng Y F. Effects of corrosion product deposit on the subsequent cathodic and anodic reactions of X-70 steel in near-neutral pH solution[J]. Corros. Sci., 2008, 50(11): 3116 | [41] | Zhang G A, Cheng Y F. Localized corrosion of carbon steel in a CO2-saturated oilfield formation water[J]. Electrochim. Acta, 2011 56(3): 1676 | [42] | Annergren I, Zou F, Thierry D. Application of localised electrochemical techniques to study kinetics of initiation and propagation during pit growth[J]. Electrochim. Acta, 1999, 44(24): 4383 | [43] | de Lima-Neto P, Farias J P, Herculano L F G, et al. Determination of the sensitized zone extension in welded AISI 304 stainless steel using non-destructive electrochemical techniques[J]. Corros. Sci., 2008, 50(4): 1149 | [44] | Li M C, Cheng Y F. Corrosion of the stressed pipe steel in carbonate-bicarbonate solution studied by scanning localized electroche-mical impedance spectroscopy[J]. Electrochim. Acta, 2008, 53(6): 2831 | [45] | Zou F, Thierry D. Localized electrochemical impedance spectroscopy for studying the degradation of organic coatings[J]. Electrochim. Acta, 1997, 42(20-22): 3293 | [46] | Zhong C, Tang X, Cheng Y F. Corrosion of steel under the defected coating studied by localized electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2008, 53(14): 4740 | [47] | Dong C F, Fu A Q, Li X G, et al. Localized EIS characterization of corrosion of steel at coating defect under cathodic protection[J]. Electrochim. Acta, 2008, 54(2): 628 | [48] | Snihirova D, Liphardt L, Grundmeier G, et al. Electrochemical study of the corrosion inhibition ability of “smart” coatings applied on AA2024[J]. J. Solid State Electrochem., 2013, 17: 2183 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|