Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (4): 287-296    DOI: 10.11902/1005.4537.2014.158
Current Issue | Archive | Adv Search |
Application of Local Electrochemical Impedance Technique in Corrosion Research
Ran XU,Jia WANG()
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
Download:  HTML  PDF(2437KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Local electrochemical impedance spectroscopy (LEIS) technique is a novel method for the study of local corrosion, which is based on the assumption that the local impedance can be generated by measuring the AC-local-current density in the vicinity of the working electrode in a usual three-electrode cell configuration. From a practical point of view, this was achieved with the use of a dual microelectrode for sensing the local AC-potential gradient, the local current being obtained from the direct application of the Ohm's law. In this paper, the history and principles of this technique were reviewed, while the applications in the field of corrosion research and the characteristics of this method were also discussed.

Key words:  local electrochemical impedance (LEIS)      corrosion      application     

Cite this article: 

Ran XU,Jia WANG. Application of Local Electrochemical Impedance Technique in Corrosion Research. Journal of Chinese Society for Corrosion and protection, 2015, 35(4): 287-296.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.158     OR     https://www.jcscp.org/EN/Y2015/V35/I4/287

Fig.1  Schematic of five-electrode configuration used to acquire LEIS data (Current (dashed)

and potential (solid) lines associated with a local defect are shown)[12]

Fig.2  Schematic representation of the LEIS apparatus[15]
Fig.3  SEM image of the AZ91 alloy after 24 h immersion in 1 mmol/L Na2SO4 solution at the corrosion potential[38]
Fig.4  Nyquist plots of the local electrochemical impedance response of the AZ91 alloy after 2 h immersion in 1 mmol/L Na2SO4 solution at the corrosion potential (the spectra were recorded close to the electrode centre at various locations over the alloy)[38]
Fig.5  LEIS plots measured on deposit covered surface (a) and freshly exposed surface (b)[40]
Fig.6  Nyquist plots obtained for alloy A at the open circuit potential in 100 mmol/L NaCl: (a) conventional EIS, (b) LEIS[42]
Fig.7  Nyquist plots obtained for alloy B at the open circuit potential in 100 mmol/L NaCl: (a) conventional EIS, (b) LEIS[42]
[1] Annergren I, Thierry D, Zou F. Localized electrochemical impedance spectroscopy for studying pitting corrosion on stainless steels[J]. J. Electrochem. Soc., 1997, 144(4): 1208
[2] Gabrielli C, Huet F,?Keddam M, et al. A review of the probabilistic aspects of localized corrosion[J]. Corrosion, 1990, 46(4): 266
[3] Wightman R M. Microvoltammetric electrodes[J]. Anal. Chem., 1981, 53(9): 1125A
[4] Sun P, Laforge F O, Mirkin M V. Scanning electrochemical microscopy in the 21st century[J]. Phys. Chem. Chem. Phys., 2007, 9(7): 802
[5] Isaacs H S, Kissel G. Surface preparation and pit propagation in stainless steels[J]. J. Electrochem. Soc., 1972, 119(12): 1628
[6] Bayet E, Huet F, Keddam M, et al. A novel way of measuring local electrochemical impedance using a single vibrating probe[J]. J. Electrochem. Soc., 1997, 144(4): L87
[7] Bayet E, Huet F, Keddam M, et al. Local electrochemical impedance measurement: scanning vibrating electrode technique in AC mode[J]. Electrochim. Acta, 1999, 44(24): 4117
[8] Gabrielli C, Joiret S, Keddam M, et al. Development of a coupled SECM-EQCM technique for the study of pitting corrosion on iron[J]. J. Electrochem. Soc., 2006, 153(3): B68
[9] Davoodi A, Pan J, Leygraf C, et al. Probing of local dissolution of Al-alloys in chloride solutions by AFM and SECM[J]. Appl. Surf. Sci., 2006, 252(15): 5499
[10] Isaacs H S, Kendig M W. Determination of surface inhomogeneities using a scanning probe impedance technique[J]. Corrosion, 1980, 36(6): 269
[11] Schreiber A, Schultze J W, Lohrengel M M, et al. Grain dependent electrochemical investigations on pure iron in acetate buffer pH 6.0[J]. Electrochim. Acta, 2006, 51(13): 2625
[12] Taylor S R. Incentives for using local electrochemical impedance methods in the investigation of organic coatings[J]. Prog. Org. Coat., 2001, 43(1-3): 141
[13] Tang X, Cheng Y F. Quantitative characterization by micro-electrochemical measurements of the synergism of hydrogen, stress and dissolution on near-neutral pH stress corrosion cracking of pipelines[J]. Corros. Sci., 2011, 53(9): 2927
[14] Mouanga M, Puiggali M, Tribollet B, et al. Galvanic corrosion between zinc and carbon steel investigated by local electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2013, 88: 6
[15] Jorcin J, Aragon E, Merlatti C E L, et al. Delaminated areas beneath organic coating: A local electrochemical impedance approach[J]. Corros. Sci., 2006, 48(7): 1779
[16] Zhang N, Sun Z H, Zhang Q, et al. Application of local electrochemical impedance spectroscopy (LEIS) on assessing the environmental failure of organic coatings[J]. Equip. Environ. Eng., 2007, 4(1): 75 (章妮, 孙志华, 张琦等.局部阻抗测试技术在评定有机涂层环境失效中的应用[J]. 装备环境工程, 2007, 4(1): 75)
[17] Lillard R S, Moran P J, Isaacs H S. A novel method for generating quantitative local electrochemical impedance spectroscopy[J]. J. Electrochem. Soc., 1992, 139(4): 1007
[18] Zou F, Thierry D, Isaacs H S. A High-resolution probe for localized electrochemical impedance spectroscopy measurements[J]. J. Electrochem. Soc., 1997, 144(6): 1957
[19] Frateur I, Huang V M, Orazem M E, et al. Experimental issues associated with measurement of local electrochemical impedance[J]. J. Electrochem. Soc., 2007, 154(12): C719
[20] Frateur I, Huang V M, Orazem M E, et al. Local electrochemical impedance spectroscopy: Considerations about the cell geometry[J]. Electrochim. Acta, 2008, 53(25): 7386
[21] Wu S, Orazem M E, Tribollet B, et al. Impedance of a disk electrode with reactions involving an adsorbed intermediate: Local and global analysis[J]. J. Electrochem. Soc., 2009, 156(1): C28
[22] Wu S, Orazem M E, Tribollet B, et al. Impedance of a disk electrode with reactions involving an adsorbed intermediate: experimental and simulation analysis[J]. J. Electrochem. Soc., 2009, 156(7): C214
[23] Ferrari J V, de Melo H I L G, Keddam M, et al. Influence of normal and radial contributions of local current density on local electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2012, 60: 244
[24] Sánchez M, Aouina N, Rose D, et al. Assessment of the electrochemical microcell geometry by local electrochemical impedance spectroscopy of copper corrosion[J]. Electrochim. Acta, 2012, 62: 276
[25] Pilaski M, Hamelmann T, Moehring A, et al. Impedance spectroscopy in micro systems[J]. Electrochim. Acta, 2002, 47(13): 2127
[26] Krawiec H, Vignal V, Oltra R. Use of the electrochemical microcell technique and the SVET for monitoring pitting corrosion at MnS inclusions[J]. Electrochem. Commun., 2004, 6(7): 655
[27] Bayet E, Huet F, Keddam M, et al.Adaptation of the scanning vibrating electrode technique to AC mode: Local electrochemical impedance measurement[J]. Mater. Sci. Forum, 1998, 57: 289
[28] Wittmann M W, Leggat R B, Taylor S R. The detection and mapping of defects in organic coatings using local electrochemical impedance methods[J].?J. Electrochem. Soc., 1999, 146(11): 4071
[29] Huang V M, Vivier V, Orazem M E, et al. The apparent constant-phase-element behavior of a disk electrode with faradaic reactions a global and local impedance analysis[J]. J. Electrochem. Soc., 2007, 154(2): C99
[30] Huang V M, Vivier V, Orazem M E, et al. The apparent constant-phase-element behavior of an ideally polarized blocking electrode a global and local impedance analysis[J]. J. Electrochem. Soc., 2007, 154(2): C81
[31] Huang V M, Vivier V, Frateur I, et al. The global and local impedance response of a blocking disk electrode with local constant-phase-element behavior[J]. J. Electrochem. Soc., 2007, 154(2): C89
[32] Schneider I A, Kuhn H, Wokaun A, et al. Study of water balance in a polymer electrolyte fuel cell by locally resolved impedance spectroscopy[J]. J. Electrochem. Soc., 2005, 152(12): A2383
[33] Schneider I A, Kramer D, Wokaun A, et al. Spatially resolved characterization of PEFCs using simultaneously neutron radiography and locally resolved impedance spectroscopy[J]. Electrochem. Commun., 2005, 7(12): 1393
[34] Bandarenka A S, Eckhard K, Maljusch A, et al. Localized electrochemical impedance spectroscopy: visualization of spatial distributions of the key parameters describing solid/liquid interfaces[J]. Anal. Chem., 2013, 85(4): 2443
[35] Montoya R, García-Galván F R, Jiménez-Morales A, et al. Effect of conductivity and frequency on detection of heterogeneities in solid/liquid interfaces using local electrochemical impedance: Theoretical and experimental study[J]. Electrochem. Commun., 2012, 15(1): 5
[36] Xiao K, Zhang X, Dong C, et al. Localized electrochemical impedance spectroscopy study on the corrosion behavior of Fe-Cr alloy in the solution with Cl- and SO42-[J]. J. Wuhan Univ. Technol. Mater., 2012, 27(1): 27
[37] Jorcin J, Orazem M E, Pébère N, et al. CPE analysis by local electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2006, 51(8): 1473
[38] Galicia G, Pébère N, Tribollet B, et al. Local and global electrochemical impedances applied to the corrosion behaviour of an AZ91 magnesium alloy[J]. Corros. Sci., 2009, 51(8): 1789
[39] Jin T Y, Cheng Y F. In-situ characterization by localized electrochemical impedance spectroscopy of the electrochemical activity of microscopic inclusions in an X100 steel[J]. Corros. Sci., 2011, 53(2): 850
[40] Meng G Z, Zhang C, Cheng Y F. Effects of corrosion product deposit on the subsequent cathodic and anodic reactions of X-70 steel in near-neutral pH solution[J]. Corros. Sci., 2008, 50(11): 3116
[41] Zhang G A, Cheng Y F. Localized corrosion of carbon steel in a CO2-saturated oilfield formation water[J]. Electrochim. Acta, 2011 56(3): 1676
[42] Annergren I, Zou F, Thierry D. Application of localised electrochemical techniques to study kinetics of initiation and propagation during pit growth[J]. Electrochim. Acta, 1999, 44(24): 4383
[43] de Lima-Neto P, Farias J P, Herculano L F G, et al. Determination of the sensitized zone extension in welded AISI 304 stainless steel using non-destructive electrochemical techniques[J]. Corros. Sci., 2008, 50(4): 1149
[44] Li M C, Cheng Y F. Corrosion of the stressed pipe steel in carbonate-bicarbonate solution studied by scanning localized electroche-mical impedance spectroscopy[J]. Electrochim. Acta, 2008, 53(6): 2831
[45] Zou F, Thierry D. Localized electrochemical impedance spectroscopy for studying the degradation of organic coatings[J]. Electrochim. Acta, 1997, 42(20-22): 3293
[46] Zhong C, Tang X, Cheng Y F. Corrosion of steel under the defected coating studied by localized electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2008, 53(14): 4740
[47] Dong C F, Fu A Q, Li X G, et al. Localized EIS characterization of corrosion of steel at coating defect under cathodic protection[J]. Electrochim. Acta, 2008, 54(2): 628
[48] Snihirova D, Liphardt L, Grundmeier G, et al. Electrochemical study of the corrosion inhibition ability of “smart” coatings applied on AA2024[J]. J. Solid State Electrochem., 2013, 17: 2183
[1] LI Chengyuan, CHEN Xu, HE Chuan, LI Hongjin, PAN Xin. Alternating Current Induced Corrosion of Buried Metal Pipeline: A Review[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[2] MING Nanxi, WANG Qishan, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Temperature on Corrosion Behavior of X70 Steel in an Artificial CO2-containing Formation Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[3] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[4] QIAO Jisen, XIA Zonghui, LIU Libo, XU Jiamin, LIU Xudong. Corrosion Resistance of Aluminum-magnesium Bimetal Composite Material Prepared by Isothermal Indirect Extrusion[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[5] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[6] GE Pengli, ZENG Wenguang, XIAO Wenwen, GAO Duolong, ZHANG Jiangjiang, LI Fang. Effect of Applied Stress and Medium Flow on Corrosion Behavior of Carbon Steel in H2S/CO2 Coexisting Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[7] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[8] ZHANG Yifan, YUAN Xiaoguang, HUANG Hongjun, ZUO Xiaojiao, CHENG Yulin. Corrosion Behavior of Cu-Al Laminated Board in Neutral Salt Fog Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[9] JIANG Bochen, CAO Jiangdong, CAO Xueyu, WANG Jiantao, ZHANG Shaopeng. Hot Corrosion Behavior of Gd2(Zr1-xCex)2O7 Thermal Barrier Coating Ceramics Exposed to Artificial Particulates of CMAS[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[10] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[11] LUAN Hao, MENG Fandi, LIU Li, CUI Yu, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Preparation and Anticorrosion Performance of M-phenylenediamine-graphene Oxide/Organic Coating[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[12] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[13] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[14] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[15] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
No Suggested Reading articles found!