Please wait a minute...
J Chin Soc Corr Pro  2012, Vol. 32 Issue (3): 203-209    DOI:
Current Issue | Archive | Adv Search |
EFFECT OF HIGH HYDROSTATIC PRESSURE ON DIFFUSING BEHAVIOR OF WATER THROUGH EPOXY COATING
LIU Ying, LIU Li, LI Ying, WANG Fuhui
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Download:  PDF(977KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The diffusing behavior of water through epoxy coating under ordinary pressure (1 atm) and high hydrostatic pressures in deep ocean (35 atm) was investigated by traditional gravimetric method and electrochemical impedance spectroscopy (EIS). The corresponding diffusion coefficients were calculated and the effect of hydrostatic pressures on kinetics of water adsorption was also analyzed. The results showed that high hydrostatic pressure accelerated the diffusion process of water through organic coating, and the diffusion mechanism had been changed from ideal Fick diffusion under 1atm to S type adsorption non-ideal Fick diffusion under 35 atm. The parameters for diffusion kinetics, including diffusion velocity, saturation time and saturated percent of water adsorption were significantly different under two environments. The changes of parameters relevant to the barrier property of epoxy coating with immersion time were also severer under high pressure, including the coating capacitance Cc, coating resistance Rc, and break-point frequency fb, resulting in coating failure before its lifetime.
Key words:  high hydrostatic pressure      epoxy coating      diffusion      EIS     
Received:  19 April 2011     
ZTFLH: 

TG172

 
Corresponding Authors:  LI Ying     E-mail:  liying@imr.ac.cn

Cite this article: 

LIU Ying, LIU Li, LI Ying, WANG Fuhui. EFFECT OF HIGH HYDROSTATIC PRESSURE ON DIFFUSING BEHAVIOR OF WATER THROUGH EPOXY COATING. J Chin Soc Corr Pro, 2012, 32(3): 203-209.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I3/203

[1] Nguyen T N, Hubbard J B, McFadden G B. A mathematical model for the cathodic blistering of organic coatings on steel immersed in electrolytes [J]. J. Coat. Technol., 1991, 63(794):43-52
[2] Hu J M, Zhang J Q, Xie D M, et al. Water transport in organic coatings Ι: Fickian diffusion [J]. J. Chin. Soc. Corros.Prot., 2002, 22(5): 311-315
 (胡吉明, 张鉴清, 谢德明等.水在有机涂层中的传输I. Fick扩散过程[J]. 中国腐蚀与防护学报, 2002,22(5): 311-315)
[3] Destreri M D G, Vogelsang J, Fedrizzi L, et al. Water up-take evaluation of new waterborne and high solid epoxy coatings.Part II: electrochemical impedance spectroscopy [J]. Prog. Org.Coat., 1999, 37(1-2): 69-81
[4] Castela A S L, Simoes A M, Ferreira M G S.EIS evaluation of attached and free polymer films [J]. Prog. Org.Coat., 2000, 38(1): 1-7
[5] Deflorian F, Fedrizzi L, Rossi S, et al. Organic coating capacitance measurement by EIS: ideal and actual trends [J].Electrochim. Acta, 1999, 44(24): 4243-4249
[6] Thu Q L, Takenouti H, Touzain S. EIS characterization of thick flawed organic coatings aged under cathodic protection in seawater [J]. Electrochim. Acta, 2006, 51(12): 2491-2502
[7] Fredj N, Cohendoz S, Mallarino S, et al. Evidencing antagonist effects of water uptake and leaching processes in marine organic coatings by gravimetry and EIS [J]. Prog. Org. Coat., 2010,67(3): 287-295
[8] Nguyen V N, Perrin F X, Vernet J L. Water permeability of organic/inorganic hybrid coatings prepared by sol-gel method: a comparison between gravimetric and capacitance measurements and evaluation of non-Fickian sorption models [J]. Corros. Sci., 2005,47(2): 397-412
[9] Darowicki K, Slepski P, Szocinski M. Application of the dynamic EIS to investigation of transport within organic coatings [J]. Prog. Org. Coat., 2005, 52(4): 306-310
[10] Kolek Z. Characterization of water penetration inside organic coatings by capacitance measurements [J]. Prog. Org. Coat.,1997, 30(4): 287-292
[11] Long F A, Richman D. Concentration gradients for diffusion of vapors in glassy polymers and their relation to time dependent diffusion phenomena [J]. J. Am. Chem. Soc., 1960, 82(3):513-519
[12] Liu B, Li Y, Lin H C, et al. Study on the diffusion behavior of water through epoxy coatings by EIS [J]. J. Chin. Soc.Corros. Prot., 2002, 22(3): 172-175
 (刘斌, 李瑛, 林海潮等.用EIS研究H2O在环氧涂层中的传输行为[J]. 中国腐蚀与防护学报,2002, 22(3): 172-175)
[13] Mansfeld F, Tsai C H. Determination of coating deterioration with EIS I. Basic relationships [J]. Corrosion, 1991,47(12): 958-963
[14] Mansfeld F, Tsai C H. Determination of coating deterioration with EIS II. Development of a method for field testing of protective coatings [J]. Corrosion, 1993, 49(9): 726-737
[1] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[2] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[3] BAI Miaomiao, BAI Ziheng, JIANG Li, ZHANG Dongjiu, YAO Qiong, WEI Dan, DONG Chaofang, XIAO Kui. Corrosion Behavior of H62 Brass Alloy/TC4 Titanium Alloy Welded Specimens[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[4] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[5] ZHAO Shuyan,TONG Xinhong,LIU Fuchun,WENG Jinyu,HAN En-Hou,LI Xiaohui,YANG Lin. Corrosion Resistance of Three Zinc-rich Epoxy Coatings[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[6] WANG Guirong,ZHENG Hongpeng,CAI Huayang,SHAO Yawei,WANG Yanqiu,MENG Guozhe,LIU Bin. Failure Process of Epoxy Coating Subjected Test of Alternating Immersion in Artificial Seawater and Dry in Air[J]. 中国腐蚀与防护学报, 2019, 39(6): 571-580.
[7] AI Peng,LIU Lixiang,LI Xiaogang,JIANG Wentao. Influence of TiAlSiN Coatings on High Temperature Oxidation Resistance of γ-TiAl Based Alloys[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[8] Guirong WANG,Yawei SHAO,Yanqiu WANG,Guozhe MENG,Bin LIU. Effect of Applied Cathodic Protection Potential on Cathodic Delamination of Damaged Epoxy Coating[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[9] Hao CHEN,Qing CHEN,Li XIN,Long SHI,Shenglong ZHU,Fuhui WANG. Preparation and High Temperature Corrosion Behavior of Aluminized Nanocrystalline Coating on DD98M Alloy[J]. 中国腐蚀与防护学报, 2019, 39(1): 59-67.
[10] Shuzhong KE, Jing LIU, Feng HUANG, Zhen WANG, Yunjie BI. Effect of Pre-strain on Hydrogen Embrittlement Susceptibility of DP600 Steel[J]. 中国腐蚀与防护学报, 2018, 38(5): 424-430.
[11] Liang CHANG, Chao SHI, Yawei SHAO, Yanqiu WANG, Bin LIU, Guozhe MENG. Effect of Phytic Acid Conversion Film on Corrosion Resistance of Epoxy Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[12] Bei QIAN, Chengbao LIU, Zuwei SONG, Junfeng REN. Anticorrosion Performance of Epoxy Coating Modified with Nanocontainers[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[13] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[14] Xiaofei CUI, Xiaoming TAN, De WANG, Ang QIAN. Assessment of Aging Performance of Polyurethane Coating for 7B04 Al-alloy with an Accelerated Testing Spectrum[J]. 中国腐蚀与防护学报, 2018, 38(1): 74-80.
[15] Jia WANG, Mengyang JIA, Zhaohui YANG, Bing HAN. On Completeness of EIS Equivalent Circuit Analysis for Electrochemical Corrosion Process[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
No Suggested Reading articles found!