Please wait a minute...
J Chin Soc Corr Pro  2012, Vol. 32 Issue (3): 217-222    DOI:
Current Issue | Archive | Adv Search |
INFLUENCE OF DISSOLVED HYDROGEN ON OXIDATION OF STAINLESS STEEL 316L IN SIMULATED PWR PRIMARY WATER
PENG Qingjiao, ZHANG Zhiming,WANG Jianqiu, HAN En-Hou, KE Wei
Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, State Key Laboratory for Corrosion and Protection, Institute of Metal Research , Chinese Academy of Sciences, Shenyang 110016
Download:  PDF(1279KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Scanning electron microscope(SEM),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM) were used to analyze the morphology, structure and chemical composition of the oxide films formed on stainless steel(SS) 316L in the simulated pressurized water reactor (PWR) primary water at 325℃. The results showed that the oxide film formed on 316L SS in high-temperature and high-pressure solution without dissolved hydrogen had a double layer structure composed of iron-rich outer layer and chromium-rich inner layer. With increasing dissolved hydrogen, the outer big oxide particles became small and more compact, but all the oxide films were consisted of spinel oxide. XPS results indicated that, with increasing dissolved hydrogen, the thickness of the oxide film increased. In addition, the nickel content in the oxide film increased, whereas the chromium content decreased.
Key words:  316L stainless steel      high-temperature and high-pressure water      oxide film      dissolved hydrogen     
Received:  28 April 2011     
ZTFLH: 

TG172

 
Corresponding Authors:  WANG Jianqiu     E-mail:  wangjianqiu@imr.ac.cn

Cite this article: 

PENG Qingjiao, ZHANG Zhiming,WANG Jianqiu, HAN En-Hou, KE Wei. INFLUENCE OF DISSOLVED HYDROGEN ON OXIDATION OF STAINLESS STEEL 316L IN SIMULATED PWR PRIMARY WATER. J Chin Soc Corr Pro, 2012, 32(3): 217-222.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I3/217

[1] Burke M A. Materials selection and validation for light water reactor electricity generating capacity sustainability[A], 5th IMR Symposium on Materials Science and Engineering: Materials and Reliability in Nuclear Power Plants[C]. China, Shenyang: 2009

[2] Nakagawa T, Totsuka N, Terachi T, et al. Influence of dissolved hydrogen on oxide film and PWSCC of Alloy 600 in PWR primary water[J]. J. Nucl. Sci. Technol., 2003, 40(1): 39-43

[3] Terachi T, Fujii K, Arioka K. Microstructure characterization of SCC crack tip and oxide film for SUS 316 stainless steel in simulated PWR primary water at 320℃[J]. J. Nucl.Sci. Technol., 2003, 42(2): 225-232

[4] Li Y, Baba Y, Sekiguchi T. The oxidation behavior of Fe, Cr and Ni O-ion implanted SUS304 stainless steel by in situ SR-XPS I. Oxidation behaviors[J]. J. Chin. Soc. Corros. Prot., 2000, 20(6):321-330

    (李瑛, Baba Y, Sekiguchi T.304不锈钢氧离子溅射的同步辐射光电子能谱原位研究 I.钢中金属元素的氧化行为 [J]. 中国腐蚀与防护学报, 2000, 20(6):321-330)

[5] Li Y, Baba Y, Sekiguchi T. The oxidation behavior of Fe, Cr and Ni O-ion implanted SUS304 stainless steel by in situ SR-XPS II. Chemical state of oxygen[J]. J. Chin. Soc. Corros. Prot., 2000,20(6): 331-337

   (李瑛, Baba Y, Sekiguchi T.304不锈钢氧离子溅射的同步辐射光电子能谱原位研究 II. 氧元素的化学状态[J]. 中国腐蚀与防护学报, 2000, 20(6): 331-337)

[6] Wang M Q, Qian Y H, Qi H B, et al. Oxidation behavior of 304 stainless steel under simulated hot-rolling condition[J]. Corros. Sci. Prot. Technol., 2011, 23(1): 5-8

    (王妙全, 钱余海, 齐慧滨等. 模拟热轧工艺条件下304不锈钢的氧化行为[J].腐蚀科学与防护技术, 2011, 23(1): 5-8)

[7] Lu J S, Wang B F, Zhang J Y, et al. Corrosion of stainless steels and Ni-base alloy in supercritical water oxidation system[J]. Chin. J. Mater. Res., 2002, 16(1): 41-45

    (卢建树,王保峰, 张九渊等. 几种合金在超临界水氧化苯酚中的腐蚀[J].材料研究学报, 2002, 16(1): 41-45)

[8] Lu J S, Li X H, Zhang J Y, et al. Corrosion of 316 stainless steels and 825 nickel base alloy in medium of supercritical water for oxidizing chlorpyrifos[J]. Corros. Sci.Prot. Technol., 2002, 14(4): 187-190

    (卢建树, 李肖华,张九渊等. 316不锈钢和825镍基合金在超临界水氧化毒死蜱介质中的腐蚀[J].腐蚀科学与防护技术, 2002, 14(4): 187-190)

[9] Hou J. Effects of microstructure on stress corrosion cracking in Ni-based 690/600 Alloy[D].Shenyang: Institute of Metal Research, Chinese Academy of Science, 2010: 119

    (侯娟.690/600合金微观结构对应力腐蚀的影响[D]. 沈阳: 中国科学院金属研究所,2010: 119)

[10] Tostuka N, Szklarska-Smialowska Z. Hydrogen induced IGSCC of two unsensitized austenitic stainless steels in high-temperature water[J]. Corrosion, 1988, 44(2): 124-126

[11] Arioka K. Effect of temperature hydrogen and boric acid concentration on IGSCC susceptibility of annealed 316 stainless steel[A]. Proc. Int. Symp. Fontevraud 5[C]. 2002: 23-27

[12] Arioka K, Yamada T, Takumi T. Influence of boric acid, hydrogen concentration and grain boundary carbide on IGSCC behaviors of SUS 316 under PER primary water[A]. Proc. 11th Int. Conf. Environmental Degradation of Materials in Nuclear Systems [C].Stevenson, 2003: 10-14

[13] Arioka K, Yamada T. Intergranular stress corrosion cracking behavior of austenitic stainless steels in hydrogenated high-temperature water[J]. Corrosion, 2006, 62(1): 74-83

[14] Qiu Y B, Shoji T, Lu Z P. Effect of dissolved hydrogen on the electrochemical behaviour of alloy 600 in simulated PWR water at290℃[J]. Corros. Sci., 2011, 53: 1983-1989

[15] Hou J, Peng Q J, Kuniya J, et al. Effect of hydrogen in Inconel Alloy 600 on corrosion in high temperature oxygenated water[J]. Corros. Sci., 2010, 52: 1098-1101

[16] Terachi T, Totsuka N, Yamada T, et al. Influence of dissolved hydrogen on structure of oxide film on alloy 600 formed in primary water of pressurized water reactors[J]. J. Nucl. Sci.Technol., 2003, 40(7): 509-516

[17] Terachi T, Yamada T, Miyamoto T, et al. Corrosion behavior of stainless steels in simulated PWR primary water-Effect of chromium content in alloys and dissolved hydrogen [J]. J. Nucl.Sci. Technol., 2008, 45(10): 975-984

[18] Berge P, Ribon C, Paul P S. Effect of hydrogen on the corrosion of steels in high temperature water[J]. Corrosion, 1977,33(5): 173-178

[19] Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Appl. Surf.Sci., 2008, 254: 2441-2449

[20] Hemmi Y, Y, Ichikawa N. General corrosion of materials under simulated BWR primary water condition[J].J. Nucl. Sci.Technol., 1994, 31(5): 443-455

[21] Lister D H, Davidson R D, McAlpine E. The mechanism and kinetics of corrosion product release from stainless steel in lithiated high temperature water[J]. Corros. Sci., 1987,27(2): 113-140

[22] Cowan R L, Staehle R W. The thermodynamics and electrode kinetic behavior of nickel in acid solution in the temperature range 25℃ to 300℃[J]. J. Electrochem. Soc., 1971, 118(3):557-568
[1] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[2] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[3] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[4] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[5] Li FENG, Ligong ZHANG, Sizhen LI, Dajiang ZHENG, Changjian LIN, Shigang DONG. Effect of Ferric Citrate on Microstructure and Corrosion Resistance of Micro-arc Oxidation Black Film on Mg-alloy AZ40M[J]. 中国腐蚀与防护学报, 2017, 37(4): 360-365.
[6] Yanliang WANG,Xu CHEN,Jidong WANG,Bo SONG,Dongsheng FAN,Chuan HE. Electrochemical Behavior of 316L Stainless Steel in Borate Buffer Solution with Different pH[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[7] Jing LIU,Xiaolu LI,Chongwei ZHU,Tao ZHANG,Guanxin ZENG,Guozhe MENG,Yawei SHAO. Prediction of Critical Pitting Temperature of 316L Stainless Steel in Gas Field Environments by Artificial Neutral Network[J]. 中国腐蚀与防护学报, 2016, 36(3): 205-211.
[8] Xiangbin DING,Hua SUN,Guojun YU,Xingtai ZHOU. Corrosion Behavior of Hastelloy N and 316L Stainless Steel in Molten LiF-NaF-KF[J]. 中国腐蚀与防护学报, 2015, 35(6): 543-548.
[9] Zhiming ZHANG,Qingjiao PENG,Jianqiu WANG,En-Hou HAN,Wei KE. Stress Corrosion Cracking Behavior of Forged 316L Stainless Steel Used for Nuclear Power Plants in Alkaline Solution at 330 ℃[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.
[10] CHEN Yu, CHEN Xu, LIU Tong, WANG Guanfu, WANG Yanliang. Effect of Potential on Electrochemical Corrosion Behavior of 316L Stainless Steel in Borate Buffer Solution[J]. 中国腐蚀与防护学报, 2015, 35(2): 137-143.
[11] HAI Zhengyin, WANG Hui, XIN Changsheng, CAI Min, QIN Bo, CHEN Tong. Influence of Zn Addition on Oxide Films Formed on Alloy 690 in High Temperature Water[J]. 中国腐蚀与防护学报, 2014, 34(6): 532-536.
[12] CHANG Qinpeng, CHEN Youyuan, SONG Fang, PENG Tao. Corrosion Properties of B30 Cu-Ni Alloy and 316L Stainless Steel in a Heat Pump System[J]. 中国腐蚀与防护学报, 2014, 34(6): 544-549.
[13] SHEN Zhao, ZHANG Lefu, ZHU Fawen, BAO Yichen. Corrosion Behavior of Candidate SCWR Fuel Cladding Materials[J]. 中国腐蚀与防护学报, 2014, 34(4): 301-306.
[14] NIE Yuanyuan, DUAN Jizhou, DU Min, HOU Baorong. Influence of NaN3 on Cathodic Oxygen Reduction Induced by Microbe-assisted Catalysis on Surface of 316LSS in Seawater[J]. 中国腐蚀与防护学报, 2014, 34(4): 359-365.
[15] DUAN Zhengang, ZHANG Lefu, WANG Li, XU Xuelian, SHI Xiuqiang. Effect of Zn Addition on Composition of Oxide Scales Formed on 316L Stainless Steel in High-temperatureand High-pressured Water[J]. 中国腐蚀与防护学报, 2014, 34(3): 249-252.
No Suggested Reading articles found!