|
|
INFLUENCE OF DISSOLVED HYDROGEN ON OXIDATION OF STAINLESS STEEL 316L IN SIMULATED PWR PRIMARY WATER |
PENG Qingjiao, ZHANG Zhiming,WANG Jianqiu, HAN En-Hou, KE Wei |
Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, State Key Laboratory for Corrosion and Protection, Institute of Metal Research , Chinese Academy of Sciences, Shenyang 110016 |
|
|
Abstract Scanning electron microscope(SEM),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM) were used to analyze the morphology, structure and chemical composition of the oxide films formed on stainless steel(SS) 316L in the simulated pressurized water reactor (PWR) primary water at 325℃. The results showed that the oxide film formed on 316L SS in high-temperature and high-pressure solution without dissolved hydrogen had a double layer structure composed of iron-rich outer layer and chromium-rich inner layer. With increasing dissolved hydrogen, the outer big oxide particles became small and more compact, but all the oxide films were consisted of spinel oxide. XPS results indicated that, with increasing dissolved hydrogen, the thickness of the oxide film increased. In addition, the nickel content in the oxide film increased, whereas the chromium content decreased.
|
Received: 28 April 2011
|
|
Corresponding Authors:
WANG Jianqiu
E-mail: wangjianqiu@imr.ac.cn
|
[1] Burke M A. Materials selection and validation for light water reactor electricity generating capacity sustainability[A], 5th IMR Symposium on Materials Science and Engineering: Materials and Reliability in Nuclear Power Plants[C]. China, Shenyang: 2009[2] Nakagawa T, Totsuka N, Terachi T, et al. Influence of dissolved hydrogen on oxide film and PWSCC of Alloy 600 in PWR primary water[J]. J. Nucl. Sci. Technol., 2003, 40(1): 39-43[3] Terachi T, Fujii K, Arioka K. Microstructure characterization of SCC crack tip and oxide film for SUS 316 stainless steel in simulated PWR primary water at 320℃[J]. J. Nucl.Sci. Technol., 2003, 42(2): 225-232[4] Li Y, Baba Y, Sekiguchi T. The oxidation behavior of Fe, Cr and Ni O-ion implanted SUS304 stainless steel by in situ SR-XPS I. Oxidation behaviors[J]. J. Chin. Soc. Corros. Prot., 2000, 20(6):321-330 (李瑛, Baba Y, Sekiguchi T.304不锈钢氧离子溅射的同步辐射光电子能谱原位研究 I.钢中金属元素的氧化行为 [J]. 中国腐蚀与防护学报, 2000, 20(6):321-330)[5] Li Y, Baba Y, Sekiguchi T. The oxidation behavior of Fe, Cr and Ni O-ion implanted SUS304 stainless steel by in situ SR-XPS II. Chemical state of oxygen[J]. J. Chin. Soc. Corros. Prot., 2000,20(6): 331-337 (李瑛, Baba Y, Sekiguchi T.304不锈钢氧离子溅射的同步辐射光电子能谱原位研究 II. 氧元素的化学状态[J]. 中国腐蚀与防护学报, 2000, 20(6): 331-337)[6] Wang M Q, Qian Y H, Qi H B, et al. Oxidation behavior of 304 stainless steel under simulated hot-rolling condition[J]. Corros. Sci. Prot. Technol., 2011, 23(1): 5-8 (王妙全, 钱余海, 齐慧滨等. 模拟热轧工艺条件下304不锈钢的氧化行为[J].腐蚀科学与防护技术, 2011, 23(1): 5-8)[7] Lu J S, Wang B F, Zhang J Y, et al. Corrosion of stainless steels and Ni-base alloy in supercritical water oxidation system[J]. Chin. J. Mater. Res., 2002, 16(1): 41-45 (卢建树,王保峰, 张九渊等. 几种合金在超临界水氧化苯酚中的腐蚀[J].材料研究学报, 2002, 16(1): 41-45)[8] Lu J S, Li X H, Zhang J Y, et al. Corrosion of 316 stainless steels and 825 nickel base alloy in medium of supercritical water for oxidizing chlorpyrifos[J]. Corros. Sci.Prot. Technol., 2002, 14(4): 187-190 (卢建树, 李肖华,张九渊等. 316不锈钢和825镍基合金在超临界水氧化毒死蜱介质中的腐蚀[J].腐蚀科学与防护技术, 2002, 14(4): 187-190)[9] Hou J. Effects of microstructure on stress corrosion cracking in Ni-based 690/600 Alloy[D].Shenyang: Institute of Metal Research, Chinese Academy of Science, 2010: 119 (侯娟.690/600合金微观结构对应力腐蚀的影响[D]. 沈阳: 中国科学院金属研究所,2010: 119)[10] Tostuka N, Szklarska-Smialowska Z. Hydrogen induced IGSCC of two unsensitized austenitic stainless steels in high-temperature water[J]. Corrosion, 1988, 44(2): 124-126[11] Arioka K. Effect of temperature hydrogen and boric acid concentration on IGSCC susceptibility of annealed 316 stainless steel[A]. Proc. Int. Symp. Fontevraud 5[C]. 2002: 23-27[12] Arioka K, Yamada T, Takumi T. Influence of boric acid, hydrogen concentration and grain boundary carbide on IGSCC behaviors of SUS 316 under PER primary water[A]. Proc. 11th Int. Conf. Environmental Degradation of Materials in Nuclear Systems [C].Stevenson, 2003: 10-14[13] Arioka K, Yamada T. Intergranular stress corrosion cracking behavior of austenitic stainless steels in hydrogenated high-temperature water[J]. Corrosion, 2006, 62(1): 74-83[14] Qiu Y B, Shoji T, Lu Z P. Effect of dissolved hydrogen on the electrochemical behaviour of alloy 600 in simulated PWR water at290℃[J]. Corros. Sci., 2011, 53: 1983-1989[15] Hou J, Peng Q J, Kuniya J, et al. Effect of hydrogen in Inconel Alloy 600 on corrosion in high temperature oxygenated water[J]. Corros. Sci., 2010, 52: 1098-1101[16] Terachi T, Totsuka N, Yamada T, et al. Influence of dissolved hydrogen on structure of oxide film on alloy 600 formed in primary water of pressurized water reactors[J]. J. Nucl. Sci.Technol., 2003, 40(7): 509-516[17] Terachi T, Yamada T, Miyamoto T, et al. Corrosion behavior of stainless steels in simulated PWR primary water-Effect of chromium content in alloys and dissolved hydrogen [J]. J. Nucl.Sci. Technol., 2008, 45(10): 975-984[18] Berge P, Ribon C, Paul P S. Effect of hydrogen on the corrosion of steels in high temperature water[J]. Corrosion, 1977,33(5): 173-178[19] Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Appl. Surf.Sci., 2008, 254: 2441-2449[20] Hemmi Y, Y, Ichikawa N. General corrosion of materials under simulated BWR primary water condition[J].J. Nucl. Sci.Technol., 1994, 31(5): 443-455[21] Lister D H, Davidson R D, McAlpine E. The mechanism and kinetics of corrosion product release from stainless steel in lithiated high temperature water[J]. Corros. Sci., 1987,27(2): 113-140[22] Cowan R L, Staehle R W. The thermodynamics and electrode kinetic behavior of nickel in acid solution in the temperature range 25℃ to 300℃[J]. J. Electrochem. Soc., 1971, 118(3):557-568 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|