Please wait a minute...
J Chin Soc Corr Pro  2012, Vol. 32 Issue (1): 48-53    DOI:
Current Issue | Archive | Adv Search |
MICROBIOLOGICALLY INFLUENCED CORROSION OF 316L SS BY MARINE BIOFILMS IN SEAWATER
LIU Bin1,2, DUAN Jizhou1, HOU Baorong1
1. Marine Corrosion and Protection Center, Institute of Oceanology, Chinese Academy of Sciences,Qingdao 266071
2. Graduate School of Chinese Academy of Sciences, Beijing 100049
Download:  PDF(948KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The microbiologically influenced corrosion behaviors of marine microorganism on 316L SS were studied by the immersion experiments in the nature seawater using the open circuit potential (Eocp), electrochemical impedance spectroscopy (EIS), potentiodynamic anodic and cyclic polarization curves, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) methods. It was observed that marine biofilm was formed by microorganisms on the surface of stainless steel. It was confirmed that Eocp of 316L SS in nature seawater shifted in noble direction nearly 450 mV. However, in sterile seawater, Eocp was stable in experimental period. The presence of marine biofilms on the stainless steel played a role in inhibiting the initial corrosion according to the decrease in corrosion current densities obtained from the polarization curves, the increase of the polarization resistance (Rp) obtained from EIS and the increase of the pitting corrosion potential from the potentiodynamic polarization by the comparison test of 316L SS immersed in nature seawater and sterile seawater. It was suggested that marine biofilm and its metabolites improved the superficial anticorrosive properties of 316L SS by inhibiting the anodic dissolution behavior of stainless steel.
Key words:  seawater      biofilms      316L stainless steel      ennoblement      corrosion inhibition     
Received:  04 November 2010     
ZTFLH: 

TG172.5

 
Corresponding Authors:  DUAN Jizhou     E-mail:  duanjz@qdio.ac.cn

Cite this article: 

LIU Bin, DUAN Jizhou, HOU Baorong. MICROBIOLOGICALLY INFLUENCED CORROSION OF 316L SS BY MARINE BIOFILMS IN SEAWATER. J Chin Soc Corr Pro, 2012, 32(1): 48-53.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I1/48

[1] Iverson W P. Microbial corrosion of metals [J]. Adv. Appl.Microb., 1987, 32: 1-36

[2] Little B J, Wagner P, Mansfeld F. Microbiologically influenced corrosion of metals and alloys [J]. Int. Mater. Rev.,1991, 36 (6): 253-272

[3] Duan J, Wu S, Zhang X, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater[J]. Electrochim.Acta, 2008, 54(1), 22-28

[4] Sun C, Han E H, Wang X. Effects of SRB on corrosion of carbon steel in seamud [J]. Corros. Sci. Prot. Technol., 2003,15(2): 104-106

    (孙成, 韩恩厚, 王旭.海泥中硫酸盐还原菌对碳钢腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2003,15(2): 104-106)

[5] Liu J H, Liang X, Li S M. Corrosion action of sulfate-reducting bacteria on two stainless steels [J]. Acta Metall.Sin., 2005, 41(5): 545-55

    (刘建华, 梁馨, 李松梅.硫酸盐还原菌对两种不锈钢的腐蚀作用[J]. 金属学报, 2005, 41(5):545-55)

[6] Niu G H, Yin Y S, Chang X T. Electrochemical corrosionbehavior of 316 stainless steel in marine microbial medium [J].Chem. Res., 2008, 19(3): 83-86

    (牛桂华, 尹衍升, 常雪婷.海洋微生物对316不锈钢的电化学腐蚀行为[J]. 化学研究,2008, 19(3):83-86)

[7] Wu J Y, Chai K, Xiao W L, et al. The single effect of microbe on the corrosion behaviors of 25 steel in seawater [J]. Acta Metall. Sin., 2010, 46(6): 755-760

    (吴进怡, 柴柯, 肖伟龙等.25钢在海水中的微生物单因素腐蚀[J]. 金属学报, 2010, 46(6): 755-760)

[8] Xiao W L, Chai K, Yang Y H, et al. Effect of microbe on the corrosion behaviors and mechanical properties of 25 carbon steel in tropical seawater condition[J]. J. Chin. Soc. Corros. Prot.,2010, 30(5): 359-363

    (肖伟龙, 柴柯, 杨雨辉等.25钢在热带海洋环境下海水中的微生物腐蚀及其对力学性能的影响[J].中国腐蚀与防护学报, 2010, 30(5): 359-363)

[9] Moradi M, Duan J, Ashassi-Sorkhabi H, et al. De-alloying of 316 stainless steel in the presence of a mixture of metal-oxidizing bacteria[J]. Coros. Sci., 2011, 53(12), 4282-4290

[10] Hernandez G, Kucera V, Thierry D, et al. Corrosion inhibition of steel by bacteria [J]. Corrosion, 1994, 50(8): 603-608

[11]    Jayaraman A, Ornek D, Duarte D A, et al. Axenic aerobic biofilms inhibit corrosion of copper and aluminum [J]. Appl.Microb. Biotechnol., 1999, 52: 787-790

[12] Ismail K M, Gehrig R, Jayaraman A, et al. Corrosion control of mild steel by aerobic bacteria under continuous flow conditions [J]. Corrosion, 2002, 58 (5): 417-423

[13] Jayaraman A, Chang E T, Earthman J C, et al. Axenic aerobic biofilms inhibit corrosion of SAE 1018 steel through oxygen depletion [J]. Appl. Microb. Biotechnol., 1997, 48: 11-17

[14] Scotto V, Cintio R D, Marcenaro G. The influence of marine aerobic microbial film on stainless steel corrosion behaviour[J]. Corros. Sci., 1985, 25: 185-194

[15] Johnsen R, Bardal E. Cathodic properties of different stainless steels in natural seawater [J]. Corrosion, 1985, 41(5):296-302

[16] Dexter S C, Gao G Y. Effect of seawater biofilms corrosion potential and oxygen reduction of stainless steel [J].Corrosion, 1988, 44(10): 717-723

[17] Scotto V, Lai M E. The ennoblement of stainless steels in seawater: A likely explanation coming from the field [J]. Corros.Sci., 1998, 40: 1007-1018

[18] Le Bozec N, Compere C, Her M L, et al. Influence of stainless steel surface treatment on the oxygen reduction in seawater[J]. Corros. Sci., 2001, 43: 765-786

[19] Dickinson W H, Caccavo F, Lewandowski Z. The ennoblement of stainless steel by manganic oxide biofouling [J]. Corros. Sci.,1996, 38(8): 1407-1422

[20] Xu F, Duan J, Hou B. Electron transfer process from marine biofilms to graphite electrodes in seawater[J].Bioelectrochemistry, 2010, 78 (1): 92-95

[21] Little B J, Lee J S, Ray R I. The influence of marine biofilms on corrosion: A concise review[J].Electrochim. Acta, 2008,54(1): 2-7

[22] Wu JH, Liu G Z, Yu H, et al. Electrochemical methods for study of microbiologically influenced corrosion in marine environment [J]. Corros. Prot., 1999, 20(5): 231-237

     (吴建华,刘光洲, 于辉等. 海洋微生物腐蚀的电化学研究方法[J]. 腐蚀与防护, 1999,20(5): 231-237)

[23] Gerald S F, Robert G K. Passivity-induced ennoblement[A]. A Compilation of Special Topic Prepared for the Waste Package Materials Performance Peer Review[C]. USA, 2002, 129

[24] Song S Z. Methods of Corrosion Electrochemistry Research [M]. Beijing: Chemistry Industry Press, 1988: 187

     (宋诗哲.腐蚀电化学研究方法[M]. 化学工业出版社, 1988: 187)

[25] Molica A, Trevis A. Correlation between the formation of a primary film and the modification of the cathodic surface steel in seawater [A]. Proc. 4th Int. Cong. Marine Corros. Foul. [C].Juan-Les-Prins. Amibes, 1976, 351

[26] Wang J, Li X B, Wang W. The effect of microorganism attachment on the open-circuit-potential of passive metals in seawater [J]. J. Chin. Soc. Corros. Prot., 2004, 24(5): 262-266

     (王佳, 李相波, 王伟. 海水环境中微生物附着对钝性金属开路电位的影响[J]. 中国腐蚀与防护学报,2004, 24(5): 262-266)
[1] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[2] LU Shuang, REN Zhengbo, XIE Jinyin, LIU Lin. Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[3] ZHAI Sixin, YANG Xingyun, YANG Jilan, GU Jianfeng. Corrosion Properties of Quenching-Partitioning-Tempering Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[4] WANG Yu, WU Jiajia, ZHANG Dun. Research Progress on Corrosion of Metal Materials Caused by Dissimilatory Iron-reducing Bacteria in Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[5] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[6] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[7] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[8] DING Guoqing,LI Xiangyang,ZHANG Bo,YANG Zhaohui,HUANG Guiqiao,YANG Haiyang,LIU Kaiji. Variation of Free Corrosion Potential of Several Metallic Materials in Natural Seawater[J]. 中国腐蚀与防护学报, 2019, 39(6): 543-549.
[9] Shaokun YAN,Dajiang ZHENG,Jiang WEI,Guangling SONG,Lian ZHOU. Electrochemical Activation of Passivated Pure Titanium in Artificial Seawater[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[10] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[11] Dan YANG,Dinglin LI,Yanliang HUANG,Pilong HUA,Xia ZHAO,Peng PENG,Xiutong WANG. Research Progress on Corrosion Issue and Metallic Material Selection Related with Seawater Pumped Storage Power Plant[J]. 中国腐蚀与防护学报, 2019, 39(1): 1-8.
[12] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[13] Yan SUN, Jiajia WU, Dun ZHANG, Shiqiang CHEN. Investigation of Microorganisms in Corrosion Product Scales on Q235 Carbon Steel Exposed to Tidal- and Full Immersion Zone at Qindao- and Sanya-sea Waters[J]. 中国腐蚀与防护学报, 2018, 38(4): 333-342.
[14] Zheng LIU, Haiying LI, Hao WANG, Yong ZHAO, Siwei XIE, Shufen ZHANG. Molecular Dynamics Simulation of Adsorption Behavior of Schiff Base Surfactants on Zn Surface in Aqueous Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[15] Zhenhua WANG, Yang BAI, Xiao MA, Shaohua XING. Numerical Simulation of Galvanic Corrosion for Couple of Ti-alloy with Cu-alloy in Seawaters[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
No Suggested Reading articles found!